Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
mptcnv
Next ⟩
cnv0
Metamath Proof Explorer
Ascii
Unicode
Theorem
mptcnv
Description:
The converse of a mapping function.
(Contributed by
Thierry Arnoux
, 16-Jan-2017)
Ref
Expression
Hypothesis
mptcnv.1
⊢
φ
→
x
∈
A
∧
y
=
B
↔
y
∈
C
∧
x
=
D
Assertion
mptcnv
⊢
φ
→
x
∈
A
⟼
B
-1
=
y
∈
C
⟼
D
Proof
Step
Hyp
Ref
Expression
1
mptcnv.1
⊢
φ
→
x
∈
A
∧
y
=
B
↔
y
∈
C
∧
x
=
D
2
1
opabbidv
⊢
φ
→
y
x
|
x
∈
A
∧
y
=
B
=
y
x
|
y
∈
C
∧
x
=
D
3
df-mpt
⊢
x
∈
A
⟼
B
=
x
y
|
x
∈
A
∧
y
=
B
4
3
cnveqi
⊢
x
∈
A
⟼
B
-1
=
x
y
|
x
∈
A
∧
y
=
B
-1
5
cnvopab
⊢
x
y
|
x
∈
A
∧
y
=
B
-1
=
y
x
|
x
∈
A
∧
y
=
B
6
4
5
eqtri
⊢
x
∈
A
⟼
B
-1
=
y
x
|
x
∈
A
∧
y
=
B
7
df-mpt
⊢
y
∈
C
⟼
D
=
y
x
|
y
∈
C
∧
x
=
D
8
2
6
7
3eqtr4g
⊢
φ
→
x
∈
A
⟼
B
-1
=
y
∈
C
⟼
D