Metamath Proof Explorer


Theorem mptcoe1fsupp

Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019)

Ref Expression
Hypotheses mptcoe1fsupp.p P = Poly 1 R
mptcoe1fsupp.b B = Base P
mptcoe1fsupp.0 0 ˙ = 0 R
Assertion mptcoe1fsupp R Ring M B finSupp 0 ˙ k 0 coe 1 M k

Proof

Step Hyp Ref Expression
1 mptcoe1fsupp.p P = Poly 1 R
2 mptcoe1fsupp.b B = Base P
3 mptcoe1fsupp.0 0 ˙ = 0 R
4 3 fvexi 0 ˙ V
5 4 a1i R Ring M B 0 ˙ V
6 eqid coe 1 M = coe 1 M
7 eqid Base R = Base R
8 6 2 1 7 coe1fvalcl M B k 0 coe 1 M k Base R
9 8 adantll R Ring M B k 0 coe 1 M k Base R
10 simpr R Ring M B M B
11 6 2 1 3 7 coe1fsupp M B coe 1 M c Base R 0 | finSupp 0 ˙ c
12 elrabi coe 1 M c Base R 0 | finSupp 0 ˙ c coe 1 M Base R 0
13 10 11 12 3syl R Ring M B coe 1 M Base R 0
14 13 4 jctir R Ring M B coe 1 M Base R 0 0 ˙ V
15 6 2 1 3 coe1sfi M B finSupp 0 ˙ coe 1 M
16 15 adantl R Ring M B finSupp 0 ˙ coe 1 M
17 fsuppmapnn0ub coe 1 M Base R 0 0 ˙ V finSupp 0 ˙ coe 1 M s 0 x 0 s < x coe 1 M x = 0 ˙
18 14 16 17 sylc R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙
19 csbfv x / k coe 1 M k = coe 1 M x
20 simpr R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙ coe 1 M x = 0 ˙
21 19 20 eqtrid R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙ x / k coe 1 M k = 0 ˙
22 21 exp31 R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙ x / k coe 1 M k = 0 ˙
23 22 a2d R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙ s < x x / k coe 1 M k = 0 ˙
24 23 ralimdva R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙ x 0 s < x x / k coe 1 M k = 0 ˙
25 24 reximdva R Ring M B s 0 x 0 s < x coe 1 M x = 0 ˙ s 0 x 0 s < x x / k coe 1 M k = 0 ˙
26 18 25 mpd R Ring M B s 0 x 0 s < x x / k coe 1 M k = 0 ˙
27 5 9 26 mptnn0fsupp R Ring M B finSupp 0 ˙ k 0 coe 1 M k