Metamath Proof Explorer


Theorem mptcoe1matfsupp

Description: The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019) (Proof shortened by AV, 23-Dec-2019)

Ref Expression
Hypotheses mptcoe1matfsupp.a A = N Mat R
mptcoe1matfsupp.q Q = Poly 1 A
mptcoe1matfsupp.l L = Base Q
Assertion mptcoe1matfsupp N Fin R Ring O L I N J N finSupp 0 R k 0 I coe 1 O k J

Proof

Step Hyp Ref Expression
1 mptcoe1matfsupp.a A = N Mat R
2 mptcoe1matfsupp.q Q = Poly 1 A
3 mptcoe1matfsupp.l L = Base Q
4 fvexd N Fin R Ring O L I N J N 0 R V
5 eqid Base R = Base R
6 eqid Base A = Base A
7 simp2 N Fin R Ring O L I N J N I N
8 7 adantr N Fin R Ring O L I N J N k 0 I N
9 simp3 N Fin R Ring O L I N J N J N
10 9 adantr N Fin R Ring O L I N J N k 0 J N
11 simp3 N Fin R Ring O L O L
12 11 3ad2ant1 N Fin R Ring O L I N J N O L
13 eqid coe 1 O = coe 1 O
14 13 3 2 6 coe1fvalcl O L k 0 coe 1 O k Base A
15 12 14 sylan N Fin R Ring O L I N J N k 0 coe 1 O k Base A
16 1 5 6 8 10 15 matecld N Fin R Ring O L I N J N k 0 I coe 1 O k J Base R
17 eqid 0 A = 0 A
18 13 3 2 17 6 coe1fsupp O L coe 1 O c Base A 0 | finSupp 0 A c
19 elrabi coe 1 O c Base A 0 | finSupp 0 A c coe 1 O Base A 0
20 12 18 19 3syl N Fin R Ring O L I N J N coe 1 O Base A 0
21 fvex 0 A V
22 20 21 jctir N Fin R Ring O L I N J N coe 1 O Base A 0 0 A V
23 13 3 2 17 coe1sfi O L finSupp 0 A coe 1 O
24 12 23 syl N Fin R Ring O L I N J N finSupp 0 A coe 1 O
25 fsuppmapnn0ub coe 1 O Base A 0 0 A V finSupp 0 A coe 1 O s 0 x 0 s < x coe 1 O x = 0 A
26 22 24 25 sylc N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A
27 csbov x / k I coe 1 O k J = I x / k coe 1 O k J
28 csbfv x / k coe 1 O k = coe 1 O x
29 28 oveqi I x / k coe 1 O k J = I coe 1 O x J
30 27 29 eqtri x / k I coe 1 O k J = I coe 1 O x J
31 30 a1i N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A x / k I coe 1 O k J = I coe 1 O x J
32 oveq coe 1 O x = 0 A I coe 1 O x J = I 0 A J
33 32 adantl N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A I coe 1 O x J = I 0 A J
34 eqid 0 R = 0 R
35 1 34 mat0op N Fin R Ring 0 A = i N , j N 0 R
36 35 3adant3 N Fin R Ring O L 0 A = i N , j N 0 R
37 36 3ad2ant1 N Fin R Ring O L I N J N 0 A = i N , j N 0 R
38 eqidd N Fin R Ring O L I N J N i = I j = J 0 R = 0 R
39 37 38 7 9 4 ovmpod N Fin R Ring O L I N J N I 0 A J = 0 R
40 39 ad4antr N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A I 0 A J = 0 R
41 31 33 40 3eqtrd N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A x / k I coe 1 O k J = 0 R
42 41 exp31 N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A x / k I coe 1 O k J = 0 R
43 42 a2d N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A s < x x / k I coe 1 O k J = 0 R
44 43 ralimdva N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A x 0 s < x x / k I coe 1 O k J = 0 R
45 44 reximdva N Fin R Ring O L I N J N s 0 x 0 s < x coe 1 O x = 0 A s 0 x 0 s < x x / k I coe 1 O k J = 0 R
46 26 45 mpd N Fin R Ring O L I N J N s 0 x 0 s < x x / k I coe 1 O k J = 0 R
47 4 16 46 mptnn0fsupp N Fin R Ring O L I N J N finSupp 0 R k 0 I coe 1 O k J