Step |
Hyp |
Ref |
Expression |
1 |
|
mptcoe1matfsupp.a |
|
2 |
|
mptcoe1matfsupp.q |
|
3 |
|
mptcoe1matfsupp.l |
|
4 |
|
fvexd |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
simp2 |
|
8 |
7
|
adantr |
|
9 |
|
simp3 |
|
10 |
9
|
adantr |
|
11 |
|
simp3 |
|
12 |
11
|
3ad2ant1 |
|
13 |
|
eqid |
|
14 |
13 3 2 6
|
coe1fvalcl |
|
15 |
12 14
|
sylan |
|
16 |
1 5 6 8 10 15
|
matecld |
|
17 |
|
eqid |
|
18 |
13 3 2 17 6
|
coe1fsupp |
|
19 |
|
elrabi |
|
20 |
12 18 19
|
3syl |
|
21 |
|
fvex |
|
22 |
20 21
|
jctir |
|
23 |
13 3 2 17
|
coe1sfi |
|
24 |
12 23
|
syl |
|
25 |
|
fsuppmapnn0ub |
|
26 |
22 24 25
|
sylc |
|
27 |
|
csbov |
|
28 |
|
csbfv |
|
29 |
28
|
oveqi |
|
30 |
27 29
|
eqtri |
|
31 |
30
|
a1i |
|
32 |
|
oveq |
|
33 |
32
|
adantl |
|
34 |
|
eqid |
|
35 |
1 34
|
mat0op |
|
36 |
35
|
3adant3 |
|
37 |
36
|
3ad2ant1 |
|
38 |
|
eqidd |
|
39 |
37 38 7 9 4
|
ovmpod |
|
40 |
39
|
ad4antr |
|
41 |
31 33 40
|
3eqtrd |
|
42 |
41
|
exp31 |
|
43 |
42
|
a2d |
|
44 |
43
|
ralimdva |
|
45 |
44
|
reximdva |
|
46 |
26 45
|
mpd |
|
47 |
4 16 46
|
mptnn0fsupp |
|