Metamath Proof Explorer


Theorem mptct

Description: A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion mptct A ω x A B ω

Proof

Step Hyp Ref Expression
1 funmpt Fun x A B
2 ctex A ω A V
3 eqid x A B = x A B
4 3 dmmptss dom x A B A
5 ssdomg A V dom x A B A dom x A B A
6 2 4 5 mpisyl A ω dom x A B A
7 domtr dom x A B A A ω dom x A B ω
8 6 7 mpancom A ω dom x A B ω
9 funfn Fun x A B x A B Fn dom x A B
10 fnct x A B Fn dom x A B dom x A B ω x A B ω
11 9 10 sylanb Fun x A B dom x A B ω x A B ω
12 1 8 11 sylancr A ω x A B ω