Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
mptct
Next ⟩
iunfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
mptct
Description:
A countable mapping set is countable.
(Contributed by
Thierry Arnoux
, 29-Dec-2016)
Ref
Expression
Assertion
mptct
⊢
A
≼
ω
→
x
∈
A
⟼
B
≼
ω
Proof
Step
Hyp
Ref
Expression
1
funmpt
⊢
Fun
⁡
x
∈
A
⟼
B
2
ctex
⊢
A
≼
ω
→
A
∈
V
3
eqid
⊢
x
∈
A
⟼
B
=
x
∈
A
⟼
B
4
3
dmmptss
⊢
dom
⁡
x
∈
A
⟼
B
⊆
A
5
ssdomg
⊢
A
∈
V
→
dom
⁡
x
∈
A
⟼
B
⊆
A
→
dom
⁡
x
∈
A
⟼
B
≼
A
6
2
4
5
mpisyl
⊢
A
≼
ω
→
dom
⁡
x
∈
A
⟼
B
≼
A
7
domtr
⊢
dom
⁡
x
∈
A
⟼
B
≼
A
∧
A
≼
ω
→
dom
⁡
x
∈
A
⟼
B
≼
ω
8
6
7
mpancom
⊢
A
≼
ω
→
dom
⁡
x
∈
A
⟼
B
≼
ω
9
funfn
⊢
Fun
⁡
x
∈
A
⟼
B
↔
x
∈
A
⟼
B
Fn
dom
⁡
x
∈
A
⟼
B
10
fnct
⊢
x
∈
A
⟼
B
Fn
dom
⁡
x
∈
A
⟼
B
∧
dom
⁡
x
∈
A
⟼
B
≼
ω
→
x
∈
A
⟼
B
≼
ω
11
9
10
sylanb
⊢
Fun
⁡
x
∈
A
⟼
B
∧
dom
⁡
x
∈
A
⟼
B
≼
ω
→
x
∈
A
⟼
B
≼
ω
12
1
8
11
sylancr
⊢
A
≼
ω
→
x
∈
A
⟼
B
≼
ω