Metamath Proof Explorer


Theorem mptelee

Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by SN, 2-Feb-2026)

Ref Expression
Assertion mptelee N k 1 N A F B 𝔼 N k 1 N A F B

Proof

Step Hyp Ref Expression
1 elee N k 1 N A F B 𝔼 N k 1 N A F B : 1 N
2 eqid k 1 N A F B = k 1 N A F B
3 2 fmpt k 1 N A F B k 1 N A F B : 1 N
4 1 3 bitr4di N k 1 N A F B 𝔼 N k 1 N A F B