Metamath Proof Explorer


Theorem mptelpm

Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses mptelpm.b φxABC
mptelpm.a φAD
mptelpm.c φCV
mptelpm.d φDW
Assertion mptelpm φxABC𝑝𝑚D

Proof

Step Hyp Ref Expression
1 mptelpm.b φxABC
2 mptelpm.a φAD
3 mptelpm.c φCV
4 mptelpm.d φDW
5 1 fmpttd φxAB:AC
6 eqid xAB=xAB
7 6 1 dmmptd φdomxAB=A
8 7 eqcomd φA=domxAB
9 8 feq2d φxAB:ACxAB:domxABC
10 5 9 mpbid φxAB:domxABC
11 7 2 eqsstrd φdomxABD
12 10 11 jca φxAB:domxABCdomxABD
13 elpm2g CVDWxABC𝑝𝑚DxAB:domxABCdomxABD
14 3 4 13 syl2anc φxABC𝑝𝑚DxAB:domxABCdomxABD
15 12 14 mpbird φxABC𝑝𝑚D