Metamath Proof Explorer


Theorem mpteq12da

Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) Remove dependency on ax-10 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12da.1 x φ
mpteq12da.2 φ A = C
mpteq12da.3 φ x A B = D
Assertion mpteq12da φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12da.1 x φ
2 mpteq12da.2 φ A = C
3 mpteq12da.3 φ x A B = D
4 nfv y φ
5 3 eqeq2d φ x A y = B y = D
6 5 pm5.32da φ x A y = B x A y = D
7 2 eleq2d φ x A x C
8 7 anbi1d φ x A y = D x C y = D
9 6 8 bitrd φ x A y = B x C y = D
10 1 4 9 opabbid φ x y | x A y = B = x y | x C y = D
11 df-mpt x A B = x y | x A y = B
12 df-mpt x C D = x y | x C y = D
13 10 11 12 3eqtr4g φ x A B = x C D