Metamath Proof Explorer


Theorem mpteq12daOLD

Description: Obsolete version of mpteq12da as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq12daOLD.1 x φ
mpteq12daOLD.2 φ A = C
mpteq12daOLD.3 φ x A B = D
Assertion mpteq12daOLD φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12daOLD.1 x φ
2 mpteq12daOLD.2 φ A = C
3 mpteq12daOLD.3 φ x A B = D
4 1 2 alrimi φ x A = C
5 1 3 ralrimia φ x A B = D
6 mpteq12f x A = C x A B = D x A B = x C D
7 4 5 6 syl2anc φ x A B = x C D