Metamath Proof Explorer


Theorem mpteq12df

Description: An equality inference for the maps-to notation. Compare mpteq12dv . (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses mpteq12df.1 x φ
mpteq12df.2 φ A = C
mpteq12df.3 φ B = D
Assertion mpteq12df φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12df.1 x φ
2 mpteq12df.2 φ A = C
3 mpteq12df.3 φ B = D
4 nfv y φ
5 2 eleq2d φ x A x C
6 3 eqeq2d φ y = B y = D
7 5 6 anbi12d φ x A y = B x C y = D
8 1 4 7 opabbid φ x y | x A y = B = x y | x C y = D
9 df-mpt x A B = x y | x A y = B
10 df-mpt x C D = x y | x C y = D
11 8 9 10 3eqtr4g φ x A B = x C D