Metamath Proof Explorer


Theorem mpteq12dva

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses mpteq12dv.1 φ A = C
mpteq12dva.2 φ x A B = D
Assertion mpteq12dva φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 φ A = C
2 mpteq12dva.2 φ x A B = D
3 1 alrimiv φ x A = C
4 2 ralrimiva φ x A B = D
5 mpteq12f x A = C x A B = D x A B = x C D
6 3 4 5 syl2anc φ x A B = x C D