Metamath Proof Explorer


Theorem mpteq12i

Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010) (Revised by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypotheses mpteq12i.1 A = C
mpteq12i.2 B = D
Assertion mpteq12i x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12i.1 A = C
2 mpteq12i.2 B = D
3 1 a1i A = C
4 2 a1i B = D
5 3 4 mpteq12dv x A B = x C D
6 5 mptru x A B = x C D