Metamath Proof Explorer


Theorem mpteq1df

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mpteq1df.1 x φ
mpteq1df.2 φ A = B
Assertion mpteq1df φ x A C = x B C

Proof

Step Hyp Ref Expression
1 mpteq1df.1 x φ
2 mpteq1df.2 φ A = B
3 1 2 alrimi φ x A = B
4 eqid C = C
5 4 rgenw x A C = C
6 mpteq12f x A = B x A C = C x A C = x B C
7 3 5 6 sylancl φ x A C = x B C