Metamath Proof Explorer


Theorem mpteq2daOLD

Description: Obsolete version of mpteq2da as of 11-Nov-2024. (Contributed by FL, 14-Sep-2013) (Revised by Mario Carneiro, 16-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq2da.1 xφ
mpteq2da.2 φxAB=C
Assertion mpteq2daOLD φxAB=xAC

Proof

Step Hyp Ref Expression
1 mpteq2da.1 xφ
2 mpteq2da.2 φxAB=C
3 eqid A=A
4 3 ax-gen xA=A
5 2 ex φxAB=C
6 1 5 ralrimi φxAB=C
7 mpteq12f xA=AxAB=CxAB=xAC
8 4 6 7 sylancr φxAB=xAC