Metamath Proof Explorer


Theorem mpteq2dfa

Description: Slightly more general equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses mpteq2dfa.1 x φ
mpteq2dfa.2 φ x A B = C
Assertion mpteq2dfa φ x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2dfa.1 x φ
2 mpteq2dfa.2 φ x A B = C
3 1 2 mpteq2da φ x A B = x A C