Metamath Proof Explorer


Theorem mptexgf

Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015) (Revised by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypothesis mptexgf.a _ x A
Assertion mptexgf A V x A B V

Proof

Step Hyp Ref Expression
1 mptexgf.a _ x A
2 funmpt Fun x A B
3 eqid x A B = x A B
4 3 dmmpt dom x A B = x A | B V
5 trud B V
6 5 rgenw x A B V
7 ss2rab x A | B V x A | x A B V
8 6 7 mpbir x A | B V x A |
9 1 rabtru x A | = A
10 8 9 sseqtri x A | B V A
11 4 10 eqsstri dom x A B A
12 ssexg dom x A B A A V dom x A B V
13 11 12 mpan A V dom x A B V
14 funex Fun x A B dom x A B V x A B V
15 2 13 14 sylancr A V x A B V