Metamath Proof Explorer


Theorem mptexw

Description: Weak version of mptex that holds without ax-rep . If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mptexw.1 A V
mptexw.2 C V
mptexw.3 x A B C
Assertion mptexw x A B V

Proof

Step Hyp Ref Expression
1 mptexw.1 A V
2 mptexw.2 C V
3 mptexw.3 x A B C
4 funmpt Fun x A B
5 eqid x A B = x A B
6 5 dmmptss dom x A B A
7 1 6 ssexi dom x A B V
8 5 rnmptss x A B C ran x A B C
9 3 8 ax-mp ran x A B C
10 2 9 ssexi ran x A B V
11 funexw Fun x A B dom x A B V ran x A B V x A B V
12 4 7 10 11 mp3an x A B V