Metamath Proof Explorer


Theorem mptfi

Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptfi A Fin x A B Fin

Proof

Step Hyp Ref Expression
1 funmpt Fun x A B
2 funfn Fun x A B x A B Fn dom x A B
3 1 2 mpbi x A B Fn dom x A B
4 eqid x A B = x A B
5 4 dmmptss dom x A B A
6 ssfi A Fin dom x A B A dom x A B Fin
7 5 6 mpan2 A Fin dom x A B Fin
8 fnfi x A B Fn dom x A B dom x A B Fin x A B Fin
9 3 7 8 sylancr A Fin x A B Fin