Metamath Proof Explorer


Theorem mptfnd

Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses mptfnd.1 _ x A
mptfnd.2 x φ
mptfnd.3 φ x A B V
Assertion mptfnd φ x A B Fn A

Proof

Step Hyp Ref Expression
1 mptfnd.1 _ x A
2 mptfnd.2 x φ
3 mptfnd.3 φ x A B V
4 3 ex φ x A B V
5 elex B V B V
6 4 5 syl6 φ x A B V
7 2 6 ralrimi φ x A B V
8 1 mptfnf x A B V x A B Fn A
9 7 8 sylib φ x A B Fn A