Step |
Hyp |
Ref |
Expression |
1 |
|
mptiffisupp.f |
|
2 |
|
mptiffisupp.a |
|
3 |
|
mptiffisupp.b |
|
4 |
|
mptiffisupp.c |
|
5 |
|
mptiffisupp.z |
|
6 |
2
|
mptexd |
|
7 |
1 6
|
eqeltrid |
|
8 |
1
|
funmpt2 |
|
9 |
8
|
a1i |
|
10 |
|
partfun |
|
11 |
1 10
|
eqtri |
|
12 |
11
|
oveq1i |
|
13 |
|
inss2 |
|
14 |
13
|
a1i |
|
15 |
14
|
sselda |
|
16 |
15 4
|
syldan |
|
17 |
16
|
fmpttd |
|
18 |
|
incom |
|
19 |
|
infi |
|
20 |
3 19
|
syl |
|
21 |
18 20
|
eqeltrrid |
|
22 |
17 21 5
|
fidmfisupp |
|
23 |
|
difexg |
|
24 |
|
mptexg |
|
25 |
2 23 24
|
3syl |
|
26 |
|
funmpt |
|
27 |
26
|
a1i |
|
28 |
|
supppreima |
|
29 |
26 25 5 28
|
mp3an2i |
|
30 |
|
simpr |
|
31 |
30
|
mpteq1d |
|
32 |
|
mpt0 |
|
33 |
31 32
|
eqtrdi |
|
34 |
33
|
cnveqd |
|
35 |
|
cnv0 |
|
36 |
34 35
|
eqtrdi |
|
37 |
36
|
imaeq1d |
|
38 |
|
0ima |
|
39 |
37 38
|
eqtrdi |
|
40 |
|
eqid |
|
41 |
|
simpr |
|
42 |
40 41
|
rnmptc |
|
43 |
42
|
difeq1d |
|
44 |
|
difid |
|
45 |
43 44
|
eqtrdi |
|
46 |
45
|
imaeq2d |
|
47 |
|
ima0 |
|
48 |
46 47
|
eqtrdi |
|
49 |
39 48
|
pm2.61dane |
|
50 |
29 49
|
eqtrd |
|
51 |
|
0fin |
|
52 |
50 51
|
eqeltrdi |
|
53 |
25 5 27 52
|
isfsuppd |
|
54 |
22 53
|
fsuppun |
|
55 |
12 54
|
eqeltrid |
|
56 |
7 5 9 55
|
isfsuppd |
|