Metamath Proof Explorer


Theorem mptiffisupp

Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses mptiffisupp.f F = x A if x B C Z
mptiffisupp.a φ A U
mptiffisupp.b φ B Fin
mptiffisupp.c φ x B C V
mptiffisupp.z φ Z W
Assertion mptiffisupp φ finSupp Z F

Proof

Step Hyp Ref Expression
1 mptiffisupp.f F = x A if x B C Z
2 mptiffisupp.a φ A U
3 mptiffisupp.b φ B Fin
4 mptiffisupp.c φ x B C V
5 mptiffisupp.z φ Z W
6 2 mptexd φ x A if x B C Z V
7 1 6 eqeltrid φ F V
8 1 funmpt2 Fun F
9 8 a1i φ Fun F
10 partfun x A if x B C Z = x A B C x A B Z
11 1 10 eqtri F = x A B C x A B Z
12 11 oveq1i F supp Z = x A B C x A B Z supp Z
13 inss2 A B B
14 13 a1i φ A B B
15 14 sselda φ x A B x B
16 15 4 syldan φ x A B C V
17 16 fmpttd φ x A B C : A B V
18 incom B A = A B
19 infi B Fin B A Fin
20 3 19 syl φ B A Fin
21 18 20 eqeltrrid φ A B Fin
22 17 21 5 fidmfisupp φ finSupp Z x A B C
23 difexg A U A B V
24 mptexg A B V x A B Z V
25 2 23 24 3syl φ x A B Z V
26 funmpt Fun x A B Z
27 26 a1i φ Fun x A B Z
28 supppreima Fun x A B Z x A B Z V Z W x A B Z supp Z = x A B Z -1 ran x A B Z Z
29 26 25 5 28 mp3an2i φ x A B Z supp Z = x A B Z -1 ran x A B Z Z
30 simpr φ A B = A B =
31 30 mpteq1d φ A B = x A B Z = x Z
32 mpt0 x Z =
33 31 32 eqtrdi φ A B = x A B Z =
34 33 cnveqd φ A B = x A B Z -1 = -1
35 cnv0 -1 =
36 34 35 eqtrdi φ A B = x A B Z -1 =
37 36 imaeq1d φ A B = x A B Z -1 ran x A B Z Z = ran x A B Z Z
38 0ima ran x A B Z Z =
39 37 38 eqtrdi φ A B = x A B Z -1 ran x A B Z Z =
40 eqid x A B Z = x A B Z
41 simpr φ A B A B
42 40 41 rnmptc φ A B ran x A B Z = Z
43 42 difeq1d φ A B ran x A B Z Z = Z Z
44 difid Z Z =
45 43 44 eqtrdi φ A B ran x A B Z Z =
46 45 imaeq2d φ A B x A B Z -1 ran x A B Z Z = x A B Z -1
47 ima0 x A B Z -1 =
48 46 47 eqtrdi φ A B x A B Z -1 ran x A B Z Z =
49 39 48 pm2.61dane φ x A B Z -1 ran x A B Z Z =
50 29 49 eqtrd φ x A B Z supp Z =
51 0fin Fin
52 50 51 eqeltrdi φ x A B Z supp Z Fin
53 25 5 27 52 isfsuppd φ finSupp Z x A B Z
54 22 53 fsuppun φ x A B C x A B Z supp Z Fin
55 12 54 eqeltrid φ F supp Z Fin
56 7 5 9 55 isfsuppd φ finSupp Z F