Metamath Proof Explorer


Theorem mptiniseg

Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypothesis dmmpt.1 F=xAB
Assertion mptiniseg CVF-1C=xA|B=C

Proof

Step Hyp Ref Expression
1 dmmpt.1 F=xAB
2 1 mptpreima F-1C=xA|BC
3 elsn2g CVBCB=C
4 3 rabbidv CVxA|BC=xA|B=C
5 2 4 eqtrid CVF-1C=xA|B=C