Metamath Proof Explorer


Theorem mptiniseg

Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypothesis dmmpt.1 F = x A B
Assertion mptiniseg C V F -1 C = x A | B = C

Proof

Step Hyp Ref Expression
1 dmmpt.1 F = x A B
2 1 mptpreima F -1 C = x A | B C
3 elsn2g C V B C B = C
4 3 rabbidv C V x A | B C = x A | B = C
5 2 4 eqtrid C V F -1 C = x A | B = C