Metamath Proof Explorer


Theorem mptnn0fsupp

Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019) (Revised by AV, 23-Dec-2019)

Ref Expression
Hypotheses mptnn0fsupp.0 φ 0 ˙ V
mptnn0fsupp.c φ k 0 C B
mptnn0fsupp.s φ s 0 x 0 s < x x / k C = 0 ˙
Assertion mptnn0fsupp φ finSupp 0 ˙ k 0 C

Proof

Step Hyp Ref Expression
1 mptnn0fsupp.0 φ 0 ˙ V
2 mptnn0fsupp.c φ k 0 C B
3 mptnn0fsupp.s φ s 0 x 0 s < x x / k C = 0 ˙
4 2 ralrimiva φ k 0 C B
5 eqid k 0 C = k 0 C
6 5 fnmpt k 0 C B k 0 C Fn 0
7 4 6 syl φ k 0 C Fn 0
8 nn0ex 0 V
9 8 a1i φ 0 V
10 1 elexd φ 0 ˙ V
11 suppvalfn k 0 C Fn 0 0 V 0 ˙ V k 0 C supp 0 ˙ = x 0 | k 0 C x 0 ˙
12 7 9 10 11 syl3anc φ k 0 C supp 0 ˙ = x 0 | k 0 C x 0 ˙
13 nne ¬ k 0 C x 0 ˙ k 0 C x = 0 ˙
14 simpr φ s 0 x 0 x 0
15 4 ad2antrr φ s 0 x 0 k 0 C B
16 rspcsbela x 0 k 0 C B x / k C B
17 14 15 16 syl2anc φ s 0 x 0 x / k C B
18 5 fvmpts x 0 x / k C B k 0 C x = x / k C
19 14 17 18 syl2anc φ s 0 x 0 k 0 C x = x / k C
20 19 eqeq1d φ s 0 x 0 k 0 C x = 0 ˙ x / k C = 0 ˙
21 13 20 syl5bb φ s 0 x 0 ¬ k 0 C x 0 ˙ x / k C = 0 ˙
22 21 imbi2d φ s 0 x 0 s < x ¬ k 0 C x 0 ˙ s < x x / k C = 0 ˙
23 22 ralbidva φ s 0 x 0 s < x ¬ k 0 C x 0 ˙ x 0 s < x x / k C = 0 ˙
24 23 rexbidva φ s 0 x 0 s < x ¬ k 0 C x 0 ˙ s 0 x 0 s < x x / k C = 0 ˙
25 3 24 mpbird φ s 0 x 0 s < x ¬ k 0 C x 0 ˙
26 rabssnn0fi x 0 | k 0 C x 0 ˙ Fin s 0 x 0 s < x ¬ k 0 C x 0 ˙
27 25 26 sylibr φ x 0 | k 0 C x 0 ˙ Fin
28 12 27 eqeltrd φ k 0 C supp 0 ˙ Fin
29 funmpt Fun k 0 C
30 8 mptex k 0 C V
31 funisfsupp Fun k 0 C k 0 C V 0 ˙ V finSupp 0 ˙ k 0 C k 0 C supp 0 ˙ Fin
32 29 30 10 31 mp3an12i φ finSupp 0 ˙ k 0 C k 0 C supp 0 ˙ Fin
33 28 32 mpbird φ finSupp 0 ˙ k 0 C