Metamath Proof Explorer


Theorem mptnn0fsuppd

Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019) (Revised by AV, 23-Dec-2019)

Ref Expression
Hypotheses mptnn0fsupp.0 φ 0 ˙ V
mptnn0fsupp.c φ k 0 C B
mptnn0fsuppd.d k = x C = D
mptnn0fsuppd.s φ s 0 x 0 s < x D = 0 ˙
Assertion mptnn0fsuppd φ finSupp 0 ˙ k 0 C

Proof

Step Hyp Ref Expression
1 mptnn0fsupp.0 φ 0 ˙ V
2 mptnn0fsupp.c φ k 0 C B
3 mptnn0fsuppd.d k = x C = D
4 mptnn0fsuppd.s φ s 0 x 0 s < x D = 0 ˙
5 vex x V
6 5 3 csbie x / k C = D
7 id D = 0 ˙ D = 0 ˙
8 6 7 eqtrid D = 0 ˙ x / k C = 0 ˙
9 8 imim2i s < x D = 0 ˙ s < x x / k C = 0 ˙
10 9 ralimi x 0 s < x D = 0 ˙ x 0 s < x x / k C = 0 ˙
11 10 reximi s 0 x 0 s < x D = 0 ˙ s 0 x 0 s < x x / k C = 0 ˙
12 4 11 syl φ s 0 x 0 s < x x / k C = 0 ˙
13 1 2 12 mptnn0fsupp φ finSupp 0 ˙ k 0 C