Metamath Proof Explorer


Theorem mptnn0fsuppr

Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019) (Revised by AV, 23-Dec-2019)

Ref Expression
Hypotheses mptnn0fsupp.0 φ 0 ˙ V
mptnn0fsupp.c φ k 0 C B
mptnn0fsuppr.s φ finSupp 0 ˙ k 0 C
Assertion mptnn0fsuppr φ s 0 x 0 s < x x / k C = 0 ˙

Proof

Step Hyp Ref Expression
1 mptnn0fsupp.0 φ 0 ˙ V
2 mptnn0fsupp.c φ k 0 C B
3 mptnn0fsuppr.s φ finSupp 0 ˙ k 0 C
4 fsuppimp finSupp 0 ˙ k 0 C Fun k 0 C k 0 C supp 0 ˙ Fin
5 2 ralrimiva φ k 0 C B
6 eqid k 0 C = k 0 C
7 6 fnmpt k 0 C B k 0 C Fn 0
8 5 7 syl φ k 0 C Fn 0
9 nn0ex 0 V
10 9 a1i φ 0 V
11 1 elexd φ 0 ˙ V
12 8 10 11 3jca φ k 0 C Fn 0 0 V 0 ˙ V
13 12 adantr φ Fun k 0 C k 0 C Fn 0 0 V 0 ˙ V
14 suppvalfn k 0 C Fn 0 0 V 0 ˙ V k 0 C supp 0 ˙ = x 0 | k 0 C x 0 ˙
15 13 14 syl φ Fun k 0 C k 0 C supp 0 ˙ = x 0 | k 0 C x 0 ˙
16 simpr φ Fun k 0 C x 0 x 0
17 5 adantr φ Fun k 0 C k 0 C B
18 17 adantr φ Fun k 0 C x 0 k 0 C B
19 rspcsbela x 0 k 0 C B x / k C B
20 16 18 19 syl2anc φ Fun k 0 C x 0 x / k C B
21 6 fvmpts x 0 x / k C B k 0 C x = x / k C
22 16 20 21 syl2anc φ Fun k 0 C x 0 k 0 C x = x / k C
23 22 neeq1d φ Fun k 0 C x 0 k 0 C x 0 ˙ x / k C 0 ˙
24 23 rabbidva φ Fun k 0 C x 0 | k 0 C x 0 ˙ = x 0 | x / k C 0 ˙
25 15 24 eqtrd φ Fun k 0 C k 0 C supp 0 ˙ = x 0 | x / k C 0 ˙
26 25 eleq1d φ Fun k 0 C k 0 C supp 0 ˙ Fin x 0 | x / k C 0 ˙ Fin
27 26 biimpd φ Fun k 0 C k 0 C supp 0 ˙ Fin x 0 | x / k C 0 ˙ Fin
28 27 expcom Fun k 0 C φ k 0 C supp 0 ˙ Fin x 0 | x / k C 0 ˙ Fin
29 28 com23 Fun k 0 C k 0 C supp 0 ˙ Fin φ x 0 | x / k C 0 ˙ Fin
30 29 imp Fun k 0 C k 0 C supp 0 ˙ Fin φ x 0 | x / k C 0 ˙ Fin
31 4 30 syl finSupp 0 ˙ k 0 C φ x 0 | x / k C 0 ˙ Fin
32 3 31 mpcom φ x 0 | x / k C 0 ˙ Fin
33 rabssnn0fi x 0 | x / k C 0 ˙ Fin s 0 x 0 s < x ¬ x / k C 0 ˙
34 nne ¬ x / k C 0 ˙ x / k C = 0 ˙
35 34 imbi2i s < x ¬ x / k C 0 ˙ s < x x / k C = 0 ˙
36 35 ralbii x 0 s < x ¬ x / k C 0 ˙ x 0 s < x x / k C = 0 ˙
37 36 rexbii s 0 x 0 s < x ¬ x / k C 0 ˙ s 0 x 0 s < x x / k C = 0 ˙
38 33 37 bitri x 0 | x / k C 0 ˙ Fin s 0 x 0 s < x x / k C = 0 ˙
39 32 38 sylib φ s 0 x 0 s < x x / k C = 0 ˙