Step |
Hyp |
Ref |
Expression |
1 |
|
mptnn0fsupp.0 |
|
2 |
|
mptnn0fsupp.c |
|
3 |
|
mptnn0fsuppr.s |
|
4 |
|
fsuppimp |
|
5 |
2
|
ralrimiva |
|
6 |
|
eqid |
|
7 |
6
|
fnmpt |
|
8 |
5 7
|
syl |
|
9 |
|
nn0ex |
|
10 |
9
|
a1i |
|
11 |
1
|
elexd |
|
12 |
8 10 11
|
3jca |
|
13 |
12
|
adantr |
|
14 |
|
suppvalfn |
|
15 |
13 14
|
syl |
|
16 |
|
simpr |
|
17 |
5
|
adantr |
|
18 |
17
|
adantr |
|
19 |
|
rspcsbela |
|
20 |
16 18 19
|
syl2anc |
|
21 |
6
|
fvmpts |
|
22 |
16 20 21
|
syl2anc |
|
23 |
22
|
neeq1d |
|
24 |
23
|
rabbidva |
|
25 |
15 24
|
eqtrd |
|
26 |
25
|
eleq1d |
|
27 |
26
|
biimpd |
|
28 |
27
|
expcom |
|
29 |
28
|
com23 |
|
30 |
29
|
imp |
|
31 |
4 30
|
syl |
|
32 |
3 31
|
mpcom |
|
33 |
|
rabssnn0fi |
|
34 |
|
nne |
|
35 |
34
|
imbi2i |
|
36 |
35
|
ralbii |
|
37 |
36
|
rexbii |
|
38 |
33 37
|
bitri |
|
39 |
32 38
|
sylib |
|