Step |
Hyp |
Ref |
Expression |
1 |
|
mptscmfsupp0.d |
|
2 |
|
mptscmfsupp0.q |
|
3 |
|
mptscmfsupp0.r |
|
4 |
|
mptscmfsupp0.k |
|
5 |
|
mptscmfsupp0.s |
|
6 |
|
mptscmfsupp0.w |
|
7 |
|
mptscmfsupp0.0 |
|
8 |
|
mptscmfsupp0.z |
|
9 |
|
mptscmfsupp0.m |
|
10 |
|
mptscmfsupp0.f |
|
11 |
1
|
mptexd |
|
12 |
|
funmpt |
|
13 |
12
|
a1i |
|
14 |
7
|
fvexi |
|
15 |
14
|
a1i |
|
16 |
10
|
fsuppimpd |
|
17 |
|
simpr |
|
18 |
5
|
ralrimiva |
|
19 |
18
|
adantr |
|
20 |
|
rspcsbela |
|
21 |
17 19 20
|
syl2anc |
|
22 |
|
eqid |
|
23 |
22
|
fvmpts |
|
24 |
17 21 23
|
syl2anc |
|
25 |
24
|
eqeq1d |
|
26 |
|
oveq1 |
|
27 |
3
|
adantr |
|
28 |
27
|
fveq2d |
|
29 |
8 28
|
eqtrid |
|
30 |
29
|
oveq1d |
|
31 |
2
|
adantr |
|
32 |
6
|
ralrimiva |
|
33 |
32
|
adantr |
|
34 |
|
rspcsbela |
|
35 |
17 33 34
|
syl2anc |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
4 36 9 37 7
|
lmod0vs |
|
39 |
31 35 38
|
syl2anc |
|
40 |
30 39
|
eqtrd |
|
41 |
26 40
|
sylan9eqr |
|
42 |
|
csbov12g |
|
43 |
42
|
adantl |
|
44 |
|
ovex |
|
45 |
43 44
|
eqeltrdi |
|
46 |
|
eqid |
|
47 |
46
|
fvmpts |
|
48 |
17 45 47
|
syl2anc |
|
49 |
48 43
|
eqtrd |
|
50 |
49
|
eqeq1d |
|
51 |
50
|
adantr |
|
52 |
41 51
|
mpbird |
|
53 |
52
|
ex |
|
54 |
25 53
|
sylbid |
|
55 |
54
|
necon3d |
|
56 |
55
|
ss2rabdv |
|
57 |
|
ovex |
|
58 |
57
|
rgenw |
|
59 |
46
|
fnmpt |
|
60 |
58 59
|
mp1i |
|
61 |
|
suppvalfn |
|
62 |
60 1 15 61
|
syl3anc |
|
63 |
22
|
fnmpt |
|
64 |
18 63
|
syl |
|
65 |
8
|
fvexi |
|
66 |
65
|
a1i |
|
67 |
|
suppvalfn |
|
68 |
64 1 66 67
|
syl3anc |
|
69 |
56 62 68
|
3sstr4d |
|
70 |
|
suppssfifsupp |
|
71 |
11 13 15 16 69 70
|
syl32anc |
|