Metamath Proof Explorer


Theorem mptscmfsupp0

Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019)

Ref Expression
Hypotheses mptscmfsupp0.d φ D V
mptscmfsupp0.q φ Q LMod
mptscmfsupp0.r φ R = Scalar Q
mptscmfsupp0.k K = Base Q
mptscmfsupp0.s φ k D S B
mptscmfsupp0.w φ k D W K
mptscmfsupp0.0 0 ˙ = 0 Q
mptscmfsupp0.z Z = 0 R
mptscmfsupp0.m ˙ = Q
mptscmfsupp0.f φ finSupp Z k D S
Assertion mptscmfsupp0 φ finSupp 0 ˙ k D S ˙ W

Proof

Step Hyp Ref Expression
1 mptscmfsupp0.d φ D V
2 mptscmfsupp0.q φ Q LMod
3 mptscmfsupp0.r φ R = Scalar Q
4 mptscmfsupp0.k K = Base Q
5 mptscmfsupp0.s φ k D S B
6 mptscmfsupp0.w φ k D W K
7 mptscmfsupp0.0 0 ˙ = 0 Q
8 mptscmfsupp0.z Z = 0 R
9 mptscmfsupp0.m ˙ = Q
10 mptscmfsupp0.f φ finSupp Z k D S
11 1 mptexd φ k D S ˙ W V
12 funmpt Fun k D S ˙ W
13 12 a1i φ Fun k D S ˙ W
14 7 fvexi 0 ˙ V
15 14 a1i φ 0 ˙ V
16 10 fsuppimpd φ k D S supp Z Fin
17 simpr φ d D d D
18 5 ralrimiva φ k D S B
19 18 adantr φ d D k D S B
20 rspcsbela d D k D S B d / k S B
21 17 19 20 syl2anc φ d D d / k S B
22 eqid k D S = k D S
23 22 fvmpts d D d / k S B k D S d = d / k S
24 17 21 23 syl2anc φ d D k D S d = d / k S
25 24 eqeq1d φ d D k D S d = Z d / k S = Z
26 oveq1 d / k S = Z d / k S ˙ d / k W = Z ˙ d / k W
27 3 adantr φ d D R = Scalar Q
28 27 fveq2d φ d D 0 R = 0 Scalar Q
29 8 28 eqtrid φ d D Z = 0 Scalar Q
30 29 oveq1d φ d D Z ˙ d / k W = 0 Scalar Q ˙ d / k W
31 2 adantr φ d D Q LMod
32 6 ralrimiva φ k D W K
33 32 adantr φ d D k D W K
34 rspcsbela d D k D W K d / k W K
35 17 33 34 syl2anc φ d D d / k W K
36 eqid Scalar Q = Scalar Q
37 eqid 0 Scalar Q = 0 Scalar Q
38 4 36 9 37 7 lmod0vs Q LMod d / k W K 0 Scalar Q ˙ d / k W = 0 ˙
39 31 35 38 syl2anc φ d D 0 Scalar Q ˙ d / k W = 0 ˙
40 30 39 eqtrd φ d D Z ˙ d / k W = 0 ˙
41 26 40 sylan9eqr φ d D d / k S = Z d / k S ˙ d / k W = 0 ˙
42 csbov12g d D d / k S ˙ W = d / k S ˙ d / k W
43 42 adantl φ d D d / k S ˙ W = d / k S ˙ d / k W
44 ovex d / k S ˙ d / k W V
45 43 44 eqeltrdi φ d D d / k S ˙ W V
46 eqid k D S ˙ W = k D S ˙ W
47 46 fvmpts d D d / k S ˙ W V k D S ˙ W d = d / k S ˙ W
48 17 45 47 syl2anc φ d D k D S ˙ W d = d / k S ˙ W
49 48 43 eqtrd φ d D k D S ˙ W d = d / k S ˙ d / k W
50 49 eqeq1d φ d D k D S ˙ W d = 0 ˙ d / k S ˙ d / k W = 0 ˙
51 50 adantr φ d D d / k S = Z k D S ˙ W d = 0 ˙ d / k S ˙ d / k W = 0 ˙
52 41 51 mpbird φ d D d / k S = Z k D S ˙ W d = 0 ˙
53 52 ex φ d D d / k S = Z k D S ˙ W d = 0 ˙
54 25 53 sylbid φ d D k D S d = Z k D S ˙ W d = 0 ˙
55 54 necon3d φ d D k D S ˙ W d 0 ˙ k D S d Z
56 55 ss2rabdv φ d D | k D S ˙ W d 0 ˙ d D | k D S d Z
57 ovex S ˙ W V
58 57 rgenw k D S ˙ W V
59 46 fnmpt k D S ˙ W V k D S ˙ W Fn D
60 58 59 mp1i φ k D S ˙ W Fn D
61 suppvalfn k D S ˙ W Fn D D V 0 ˙ V k D S ˙ W supp 0 ˙ = d D | k D S ˙ W d 0 ˙
62 60 1 15 61 syl3anc φ k D S ˙ W supp 0 ˙ = d D | k D S ˙ W d 0 ˙
63 22 fnmpt k D S B k D S Fn D
64 18 63 syl φ k D S Fn D
65 8 fvexi Z V
66 65 a1i φ Z V
67 suppvalfn k D S Fn D D V Z V k D S supp Z = d D | k D S d Z
68 64 1 66 67 syl3anc φ k D S supp Z = d D | k D S d Z
69 56 62 68 3sstr4d φ k D S ˙ W supp 0 ˙ k D S supp Z
70 suppssfifsupp k D S ˙ W V Fun k D S ˙ W 0 ˙ V k D S supp Z Fin k D S ˙ W supp 0 ˙ k D S supp Z finSupp 0 ˙ k D S ˙ W
71 11 13 15 16 69 70 syl32anc φ finSupp 0 ˙ k D S ˙ W