Metamath Proof Explorer


Theorem mptscmfsuppd

Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019) (Proof shortened by AV, 18-Oct-2019)

Ref Expression
Hypotheses mptscmfsuppd.b B = Base P
mptscmfsuppd.s S = Scalar P
mptscmfsuppd.n · ˙ = P
mptscmfsuppd.p φ P LMod
mptscmfsuppd.x φ X V
mptscmfsuppd.z φ k X Z B
mptscmfsuppd.a φ A : X Y
mptscmfsuppd.f φ finSupp 0 S A
Assertion mptscmfsuppd φ finSupp 0 P k X A k · ˙ Z

Proof

Step Hyp Ref Expression
1 mptscmfsuppd.b B = Base P
2 mptscmfsuppd.s S = Scalar P
3 mptscmfsuppd.n · ˙ = P
4 mptscmfsuppd.p φ P LMod
5 mptscmfsuppd.x φ X V
6 mptscmfsuppd.z φ k X Z B
7 mptscmfsuppd.a φ A : X Y
8 mptscmfsuppd.f φ finSupp 0 S A
9 2 a1i φ S = Scalar P
10 fvexd φ k X A k V
11 eqid 0 P = 0 P
12 eqid 0 S = 0 S
13 7 feqmptd φ A = k X A k
14 13 8 eqbrtrrd φ finSupp 0 S k X A k
15 5 4 9 1 10 6 11 12 3 14 mptscmfsupp0 φ finSupp 0 P k X A k · ˙ Z