Metamath Proof Explorer


Theorem mptssid

Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mptssid.1 _ x A
mptssid.2 C = x A | B V
Assertion mptssid x A B = x C B

Proof

Step Hyp Ref Expression
1 mptssid.1 _ x A
2 mptssid.2 C = x A | B V
3 eqvisset y = B B V
4 3 anim2i x A y = B x A B V
5 rabid x x A | B V x A B V
6 4 5 sylibr x A y = B x x A | B V
7 6 2 eleqtrrdi x A y = B x C
8 simpr x A y = B y = B
9 7 8 jca x A y = B x C y = B
10 1 ssrab2f x A | B V A
11 2 10 eqsstri C A
12 11 sseli x C x A
13 12 anim1i x C y = B x A y = B
14 9 13 impbii x A y = B x C y = B
15 14 opabbii x y | x A y = B = x y | x C y = B
16 df-mpt x A B = x y | x A y = B
17 df-mpt x C B = x y | x C y = B
18 15 16 17 3eqtr4i x A B = x C B