Metamath Proof Explorer


Theorem mptun

Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptun x A B C = x A C x B C

Proof

Step Hyp Ref Expression
1 df-mpt x A B C = x y | x A B y = C
2 df-mpt x A C = x y | x A y = C
3 df-mpt x B C = x y | x B y = C
4 2 3 uneq12i x A C x B C = x y | x A y = C x y | x B y = C
5 elun x A B x A x B
6 5 anbi1i x A B y = C x A x B y = C
7 andir x A x B y = C x A y = C x B y = C
8 6 7 bitri x A B y = C x A y = C x B y = C
9 8 opabbii x y | x A B y = C = x y | x A y = C x B y = C
10 unopab x y | x A y = C x y | x B y = C = x y | x A y = C x B y = C
11 9 10 eqtr4i x y | x A B y = C = x y | x A y = C x y | x B y = C
12 4 11 eqtr4i x A C x B C = x y | x A B y = C
13 1 12 eqtr4i x A B C = x A C x B C