Metamath Proof Explorer


Theorem mptv

Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013)

Ref Expression
Assertion mptv x V B = x y | y = B

Proof

Step Hyp Ref Expression
1 df-mpt x V B = x y | x V y = B
2 vex x V
3 2 biantrur y = B x V y = B
4 3 opabbii x y | y = B = x y | x V y = B
5 1 4 eqtr4i x V B = x y | y = B