Database
BASIC STRUCTURES
Moore spaces
Moore closures
mrccl
Next ⟩
mrcsncl
Metamath Proof Explorer
Ascii
Unicode
Theorem
mrccl
Description:
The Moore closure of a set is a closed set.
(Contributed by
Stefan O'Rear
, 31-Jan-2015)
Ref
Expression
Hypothesis
mrcfval.f
⊢
F
=
mrCls
⁡
C
Assertion
mrccl
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
F
⁡
U
∈
C
Proof
Step
Hyp
Ref
Expression
1
mrcfval.f
⊢
F
=
mrCls
⁡
C
2
1
mrcf
⊢
C
∈
Moore
⁡
X
→
F
:
𝒫
X
⟶
C
3
2
adantr
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
F
:
𝒫
X
⟶
C
4
mre1cl
⊢
C
∈
Moore
⁡
X
→
X
∈
C
5
elpw2g
⊢
X
∈
C
→
U
∈
𝒫
X
↔
U
⊆
X
6
4
5
syl
⊢
C
∈
Moore
⁡
X
→
U
∈
𝒫
X
↔
U
⊆
X
7
6
biimpar
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
U
∈
𝒫
X
8
3
7
ffvelrnd
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
F
⁡
U
∈
C