Metamath Proof Explorer


Theorem mrccl

Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F = mrCls C
Assertion mrccl C Moore X U X F U C

Proof

Step Hyp Ref Expression
1 mrcfval.f F = mrCls C
2 1 mrcf C Moore X F : 𝒫 X C
3 2 adantr C Moore X U X F : 𝒫 X C
4 mre1cl C Moore X X C
5 elpw2g X C U 𝒫 X U X
6 4 5 syl C Moore X U 𝒫 X U X
7 6 biimpar C Moore X U X U 𝒫 X
8 3 7 ffvelrnd C Moore X U X F U C