Metamath Proof Explorer


Theorem mrccls

Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrccls.f F = mrCls Clsd J
Assertion mrccls J Top cls J = F

Proof

Step Hyp Ref Expression
1 mrccls.f F = mrCls Clsd J
2 eqid J = J
3 2 clsfval J Top cls J = a 𝒫 J b Clsd J | a b
4 2 cldmre J Top Clsd J Moore J
5 1 mrcfval Clsd J Moore J F = a 𝒫 J b Clsd J | a b
6 4 5 syl J Top F = a 𝒫 J b Clsd J | a b
7 3 6 eqtr4d J Top cls J = F