Metamath Proof Explorer


Theorem mrccss

Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses mrccss.v V = Base W
mrccss.o ˙ = ocv W
mrccss.c C = ClSubSp W
mrccss.f F = mrCls C
Assertion mrccss W PreHil S V F S = ˙ ˙ S

Proof

Step Hyp Ref Expression
1 mrccss.v V = Base W
2 mrccss.o ˙ = ocv W
3 mrccss.c C = ClSubSp W
4 mrccss.f F = mrCls C
5 1 3 cssmre W PreHil C Moore V
6 5 adantr W PreHil S V C Moore V
7 1 2 ocvocv W PreHil S V S ˙ ˙ S
8 1 2 ocvss ˙ S V
9 8 a1i S V ˙ S V
10 1 3 2 ocvcss W PreHil ˙ S V ˙ ˙ S C
11 9 10 sylan2 W PreHil S V ˙ ˙ S C
12 4 mrcsscl C Moore V S ˙ ˙ S ˙ ˙ S C F S ˙ ˙ S
13 6 7 11 12 syl3anc W PreHil S V F S ˙ ˙ S
14 4 mrcssid C Moore V S V S F S
15 5 14 sylan W PreHil S V S F S
16 2 ocv2ss S F S ˙ F S ˙ S
17 2 ocv2ss ˙ F S ˙ S ˙ ˙ S ˙ ˙ F S
18 15 16 17 3syl W PreHil S V ˙ ˙ S ˙ ˙ F S
19 4 mrccl C Moore V S V F S C
20 5 19 sylan W PreHil S V F S C
21 2 3 cssi F S C F S = ˙ ˙ F S
22 20 21 syl W PreHil S V F S = ˙ ˙ F S
23 18 22 sseqtrrd W PreHil S V ˙ ˙ S F S
24 13 23 eqssd W PreHil S V F S = ˙ ˙ S