Metamath Proof Explorer


Theorem mrcflem

Description: The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Assertion mrcflem C Moore X x 𝒫 X s C | x s : 𝒫 X C

Proof

Step Hyp Ref Expression
1 simpl C Moore X x 𝒫 X C Moore X
2 ssrab2 s C | x s C
3 2 a1i C Moore X x 𝒫 X s C | x s C
4 sseq2 s = X x s x X
5 mre1cl C Moore X X C
6 5 adantr C Moore X x 𝒫 X X C
7 elpwi x 𝒫 X x X
8 7 adantl C Moore X x 𝒫 X x X
9 4 6 8 elrabd C Moore X x 𝒫 X X s C | x s
10 9 ne0d C Moore X x 𝒫 X s C | x s
11 mreintcl C Moore X s C | x s C s C | x s s C | x s C
12 1 3 10 11 syl3anc C Moore X x 𝒫 X s C | x s C
13 12 fmpttd C Moore X x 𝒫 X s C | x s : 𝒫 X C