Database
BASIC STRUCTURES
Moore spaces
Moore closures
mrcidb2
Next ⟩
mrcidm
Metamath Proof Explorer
Ascii
Unicode
Theorem
mrcidb2
Description:
A set is closed iff it contains its closure.
(Contributed by
Stefan O'Rear
, 2-Apr-2015)
Ref
Expression
Hypothesis
mrcfval.f
⊢
F
=
mrCls
⁡
C
Assertion
mrcidb2
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
U
∈
C
↔
F
⁡
U
⊆
U
Proof
Step
Hyp
Ref
Expression
1
mrcfval.f
⊢
F
=
mrCls
⁡
C
2
1
mrcidb
⊢
C
∈
Moore
⁡
X
→
U
∈
C
↔
F
⁡
U
=
U
3
2
adantr
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
U
∈
C
↔
F
⁡
U
=
U
4
eqss
⊢
F
⁡
U
=
U
↔
F
⁡
U
⊆
U
∧
U
⊆
F
⁡
U
5
1
mrcssid
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
U
⊆
F
⁡
U
6
5
biantrud
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
F
⁡
U
⊆
U
↔
F
⁡
U
⊆
U
∧
U
⊆
F
⁡
U
7
4
6
bitr4id
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
F
⁡
U
=
U
↔
F
⁡
U
⊆
U
8
3
7
bitrd
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
U
∈
C
↔
F
⁡
U
⊆
U