Metamath Proof Explorer


Theorem mrcidmd

Description: Moore closure is idempotent. Deduction form of mrcidm . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrcssidd.1 φ A Moore X
mrcssidd.2 N = mrCls A
mrcssidd.3 φ U X
Assertion mrcidmd φ N N U = N U

Proof

Step Hyp Ref Expression
1 mrcssidd.1 φ A Moore X
2 mrcssidd.2 N = mrCls A
3 mrcssidd.3 φ U X
4 2 mrcidm A Moore X U X N N U = N U
5 1 3 4 syl2anc φ N N U = N U