Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
mrclsp
Next ⟩
lspsnss
Metamath Proof Explorer
Ascii
Unicode
Theorem
mrclsp
Description:
Moore closure generalizes module span.
(Contributed by
Stefan O'Rear
, 31-Jan-2015)
Ref
Expression
Hypotheses
mrclsp.u
⊢
U
=
LSubSp
⁡
W
mrclsp.k
⊢
K
=
LSpan
⁡
W
mrclsp.f
⊢
F
=
mrCls
⁡
U
Assertion
mrclsp
⊢
W
∈
LMod
→
K
=
F
Proof
Step
Hyp
Ref
Expression
1
mrclsp.u
⊢
U
=
LSubSp
⁡
W
2
mrclsp.k
⊢
K
=
LSpan
⁡
W
3
mrclsp.f
⊢
F
=
mrCls
⁡
U
4
eqid
⊢
Base
W
=
Base
W
5
4
1
2
lspfval
⊢
W
∈
LMod
→
K
=
a
∈
𝒫
Base
W
⟼
⋂
b
∈
U
|
a
⊆
b
6
4
1
lssmre
⊢
W
∈
LMod
→
U
∈
Moore
⁡
Base
W
7
3
mrcfval
⊢
U
∈
Moore
⁡
Base
W
→
F
=
a
∈
𝒫
Base
W
⟼
⋂
b
∈
U
|
a
⊆
b
8
6
7
syl
⊢
W
∈
LMod
→
F
=
a
∈
𝒫
Base
W
⟼
⋂
b
∈
U
|
a
⊆
b
9
5
8
eqtr4d
⊢
W
∈
LMod
→
K
=
F