Metamath Proof Explorer


Theorem mrclsp

Description: Moore closure generalizes module span. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses mrclsp.u U = LSubSp W
mrclsp.k K = LSpan W
mrclsp.f F = mrCls U
Assertion mrclsp W LMod K = F

Proof

Step Hyp Ref Expression
1 mrclsp.u U = LSubSp W
2 mrclsp.k K = LSpan W
3 mrclsp.f F = mrCls U
4 eqid Base W = Base W
5 4 1 2 lspfval W LMod K = a 𝒫 Base W b U | a b
6 4 1 lssmre W LMod U Moore Base W
7 3 mrcfval U Moore Base W F = a 𝒫 Base W b U | a b
8 6 7 syl W LMod F = a 𝒫 Base W b U | a b
9 5 8 eqtr4d W LMod K = F