Metamath Proof Explorer


Theorem mrcrsp

Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses mrcrsp.u U = LIdeal R
mrcrsp.k K = RSpan R
mrcrsp.f F = mrCls U
Assertion mrcrsp R Ring K = F

Proof

Step Hyp Ref Expression
1 mrcrsp.u U = LIdeal R
2 mrcrsp.k K = RSpan R
3 mrcrsp.f F = mrCls U
4 rlmlmod R Ring ringLMod R LMod
5 lidlval LIdeal R = LSubSp ringLMod R
6 1 5 eqtri U = LSubSp ringLMod R
7 rspval RSpan R = LSpan ringLMod R
8 2 7 eqtri K = LSpan ringLMod R
9 6 8 3 mrclsp ringLMod R LMod K = F
10 4 9 syl R Ring K = F