Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
mrcrsp
Next ⟩
lidlnz
Metamath Proof Explorer
Ascii
Unicode
Theorem
mrcrsp
Description:
Moore closure generalizes ideal span.
(Contributed by
Stefan O'Rear
, 4-Apr-2015)
Ref
Expression
Hypotheses
mrcrsp.u
⊢
U
=
LIdeal
⁡
R
mrcrsp.k
⊢
K
=
RSpan
⁡
R
mrcrsp.f
⊢
F
=
mrCls
⁡
U
Assertion
mrcrsp
⊢
R
∈
Ring
→
K
=
F
Proof
Step
Hyp
Ref
Expression
1
mrcrsp.u
⊢
U
=
LIdeal
⁡
R
2
mrcrsp.k
⊢
K
=
RSpan
⁡
R
3
mrcrsp.f
⊢
F
=
mrCls
⁡
U
4
rlmlmod
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod
5
lidlval
⊢
LIdeal
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
6
1
5
eqtri
⊢
U
=
LSubSp
⁡
ringLMod
⁡
R
7
rspval
⊢
RSpan
⁡
R
=
LSpan
⁡
ringLMod
⁡
R
8
2
7
eqtri
⊢
K
=
LSpan
⁡
ringLMod
⁡
R
9
6
8
3
mrclsp
⊢
ringLMod
⁡
R
∈
LMod
→
K
=
F
10
4
9
syl
⊢
R
∈
Ring
→
K
=
F