Database
BASIC STRUCTURES
Moore spaces
Moore closures
mrcss
Next ⟩
mrcssid
Metamath Proof Explorer
Ascii
Unicode
Theorem
mrcss
Description:
Closure preserves subset ordering.
(Contributed by
Stefan O'Rear
, 31-Jan-2015)
Ref
Expression
Hypothesis
mrcfval.f
⊢
F
=
mrCls
⁡
C
Assertion
mrcss
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
F
⁡
U
⊆
F
⁡
V
Proof
Step
Hyp
Ref
Expression
1
mrcfval.f
⊢
F
=
mrCls
⁡
C
2
sstr2
⊢
U
⊆
V
→
V
⊆
s
→
U
⊆
s
3
2
adantr
⊢
U
⊆
V
∧
s
∈
C
→
V
⊆
s
→
U
⊆
s
4
3
ss2rabdv
⊢
U
⊆
V
→
s
∈
C
|
V
⊆
s
⊆
s
∈
C
|
U
⊆
s
5
intss
⊢
s
∈
C
|
V
⊆
s
⊆
s
∈
C
|
U
⊆
s
→
⋂
s
∈
C
|
U
⊆
s
⊆
⋂
s
∈
C
|
V
⊆
s
6
4
5
syl
⊢
U
⊆
V
→
⋂
s
∈
C
|
U
⊆
s
⊆
⋂
s
∈
C
|
V
⊆
s
7
6
3ad2ant2
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
⋂
s
∈
C
|
U
⊆
s
⊆
⋂
s
∈
C
|
V
⊆
s
8
simp1
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
C
∈
Moore
⁡
X
9
sstr
⊢
U
⊆
V
∧
V
⊆
X
→
U
⊆
X
10
9
3adant1
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
U
⊆
X
11
1
mrcval
⊢
C
∈
Moore
⁡
X
∧
U
⊆
X
→
F
⁡
U
=
⋂
s
∈
C
|
U
⊆
s
12
8
10
11
syl2anc
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
F
⁡
U
=
⋂
s
∈
C
|
U
⊆
s
13
1
mrcval
⊢
C
∈
Moore
⁡
X
∧
V
⊆
X
→
F
⁡
V
=
⋂
s
∈
C
|
V
⊆
s
14
13
3adant2
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
F
⁡
V
=
⋂
s
∈
C
|
V
⊆
s
15
7
12
14
3sstr4d
⊢
C
∈
Moore
⁡
X
∧
U
⊆
V
∧
V
⊆
X
→
F
⁡
U
⊆
F
⁡
V