Metamath Proof Explorer


Theorem mrcss

Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F = mrCls C
Assertion mrcss C Moore X U V V X F U F V

Proof

Step Hyp Ref Expression
1 mrcfval.f F = mrCls C
2 sstr2 U V V s U s
3 2 adantr U V s C V s U s
4 3 ss2rabdv U V s C | V s s C | U s
5 intss s C | V s s C | U s s C | U s s C | V s
6 4 5 syl U V s C | U s s C | V s
7 6 3ad2ant2 C Moore X U V V X s C | U s s C | V s
8 simp1 C Moore X U V V X C Moore X
9 sstr U V V X U X
10 9 3adant1 C Moore X U V V X U X
11 1 mrcval C Moore X U X F U = s C | U s
12 8 10 11 syl2anc C Moore X U V V X F U = s C | U s
13 1 mrcval C Moore X V X F V = s C | V s
14 13 3adant2 C Moore X U V V X F V = s C | V s
15 7 12 14 3sstr4d C Moore X U V V X F U F V