Metamath Proof Explorer


Theorem mrcssidd

Description: A set is contained in its Moore closure. Deduction form of mrcssid . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrcssidd.1 φ A Moore X
mrcssidd.2 N = mrCls A
mrcssidd.3 φ U X
Assertion mrcssidd φ U N U

Proof

Step Hyp Ref Expression
1 mrcssidd.1 φ A Moore X
2 mrcssidd.2 N = mrCls A
3 mrcssidd.3 φ U X
4 2 mrcssid A Moore X U X U N U
5 1 3 4 syl2anc φ U N U