Metamath Proof Explorer


Theorem mrcun

Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcun CMooreXUXVXFUV=FFUFV

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 simp1 CMooreXUXVXCMooreX
3 mre1cl CMooreXXC
4 elpw2g XCU𝒫XUX
5 3 4 syl CMooreXU𝒫XUX
6 5 biimpar CMooreXUXU𝒫X
7 6 3adant3 CMooreXUXVXU𝒫X
8 elpw2g XCV𝒫XVX
9 3 8 syl CMooreXV𝒫XVX
10 9 biimpar CMooreXVXV𝒫X
11 10 3adant2 CMooreXUXVXV𝒫X
12 7 11 prssd CMooreXUXVXUV𝒫X
13 1 mrcuni CMooreXUV𝒫XFUV=FFUV
14 2 12 13 syl2anc CMooreXUXVXFUV=FFUV
15 uniprg U𝒫XV𝒫XUV=UV
16 7 11 15 syl2anc CMooreXUXVXUV=UV
17 16 fveq2d CMooreXUXVXFUV=FUV
18 1 mrcf CMooreXF:𝒫XC
19 18 ffnd CMooreXFFn𝒫X
20 19 3ad2ant1 CMooreXUXVXFFn𝒫X
21 fnimapr FFn𝒫XU𝒫XV𝒫XFUV=FUFV
22 20 7 11 21 syl3anc CMooreXUXVXFUV=FUFV
23 22 unieqd CMooreXUXVXFUV=FUFV
24 fvex FUV
25 fvex FVV
26 24 25 unipr FUFV=FUFV
27 23 26 eqtrdi CMooreXUXVXFUV=FUFV
28 27 fveq2d CMooreXUXVXFFUV=FFUFV
29 14 17 28 3eqtr3d CMooreXUXVXFUV=FFUFV