Metamath Proof Explorer


Theorem mrcval

Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Fan Zheng, 6-Jun-2016)

Ref Expression
Hypothesis mrcfval.f F = mrCls C
Assertion mrcval C Moore X U X F U = s C | U s

Proof

Step Hyp Ref Expression
1 mrcfval.f F = mrCls C
2 1 mrcfval C Moore X F = x 𝒫 X s C | x s
3 2 adantr C Moore X U X F = x 𝒫 X s C | x s
4 sseq1 x = U x s U s
5 4 rabbidv x = U s C | x s = s C | U s
6 5 inteqd x = U s C | x s = s C | U s
7 6 adantl C Moore X U X x = U s C | x s = s C | U s
8 mre1cl C Moore X X C
9 elpw2g X C U 𝒫 X U X
10 8 9 syl C Moore X U 𝒫 X U X
11 10 biimpar C Moore X U X U 𝒫 X
12 sseq2 s = X U s U X
13 8 adantr C Moore X U X X C
14 simpr C Moore X U X U X
15 12 13 14 elrabd C Moore X U X X s C | U s
16 15 ne0d C Moore X U X s C | U s
17 intex s C | U s s C | U s V
18 16 17 sylib C Moore X U X s C | U s V
19 3 7 11 18 fvmptd C Moore X U X F U = s C | U s