Metamath Proof Explorer


Theorem mreacs

Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion mreacs X V ACS X Moore 𝒫 X

Proof

Step Hyp Ref Expression
1 fveq2 x = X ACS x = ACS X
2 pweq x = X 𝒫 x = 𝒫 X
3 2 fveq2d x = X Moore 𝒫 x = Moore 𝒫 X
4 1 3 eleq12d x = X ACS x Moore 𝒫 x ACS X Moore 𝒫 X
5 acsmre a ACS x a Moore x
6 mresspw a Moore x a 𝒫 x
7 5 6 syl a ACS x a 𝒫 x
8 5 7 elpwd a ACS x a 𝒫 𝒫 x
9 8 ssriv ACS x 𝒫 𝒫 x
10 9 a1i ACS x 𝒫 𝒫 x
11 vex x V
12 mremre x V Moore x Moore 𝒫 x
13 11 12 mp1i a ACS x Moore x Moore 𝒫 x
14 5 ssriv ACS x Moore x
15 sstr a ACS x ACS x Moore x a Moore x
16 14 15 mpan2 a ACS x a Moore x
17 mrerintcl Moore x Moore 𝒫 x a Moore x 𝒫 x a Moore x
18 13 16 17 syl2anc a ACS x 𝒫 x a Moore x
19 ssel2 a ACS x d a d ACS x
20 19 acsmred a ACS x d a d Moore x
21 eqid mrCls d = mrCls d
22 20 21 mrcssvd a ACS x d a mrCls d c x
23 22 ralrimiva a ACS x d a mrCls d c x
24 23 adantr a ACS x c 𝒫 x d a mrCls d c x
25 iunss d a mrCls d c x d a mrCls d c x
26 24 25 sylibr a ACS x c 𝒫 x d a mrCls d c x
27 11 elpw2 d a mrCls d c 𝒫 x d a mrCls d c x
28 26 27 sylibr a ACS x c 𝒫 x d a mrCls d c 𝒫 x
29 28 fmpttd a ACS x c 𝒫 x d a mrCls d c : 𝒫 x 𝒫 x
30 fssxp c 𝒫 x d a mrCls d c : 𝒫 x 𝒫 x c 𝒫 x d a mrCls d c 𝒫 x × 𝒫 x
31 29 30 syl a ACS x c 𝒫 x d a mrCls d c 𝒫 x × 𝒫 x
32 vpwex 𝒫 x V
33 32 32 xpex 𝒫 x × 𝒫 x V
34 ssexg c 𝒫 x d a mrCls d c 𝒫 x × 𝒫 x 𝒫 x × 𝒫 x V c 𝒫 x d a mrCls d c V
35 31 33 34 sylancl a ACS x c 𝒫 x d a mrCls d c V
36 19 adantlr a ACS x b 𝒫 x d a d ACS x
37 elpwi b 𝒫 x b x
38 37 ad2antlr a ACS x b 𝒫 x d a b x
39 21 acsfiel2 d ACS x b x b d e 𝒫 b Fin mrCls d e b
40 36 38 39 syl2anc a ACS x b 𝒫 x d a b d e 𝒫 b Fin mrCls d e b
41 40 ralbidva a ACS x b 𝒫 x d a b d d a e 𝒫 b Fin mrCls d e b
42 iunss d a mrCls d e b d a mrCls d e b
43 42 ralbii e 𝒫 b Fin d a mrCls d e b e 𝒫 b Fin d a mrCls d e b
44 ralcom e 𝒫 b Fin d a mrCls d e b d a e 𝒫 b Fin mrCls d e b
45 43 44 bitri e 𝒫 b Fin d a mrCls d e b d a e 𝒫 b Fin mrCls d e b
46 41 45 bitr4di a ACS x b 𝒫 x d a b d e 𝒫 b Fin d a mrCls d e b
47 elrint2 b 𝒫 x b 𝒫 x a d a b d
48 47 adantl a ACS x b 𝒫 x b 𝒫 x a d a b d
49 funmpt Fun c 𝒫 x d a mrCls d c
50 funiunfv Fun c 𝒫 x d a mrCls d c e 𝒫 b Fin c 𝒫 x d a mrCls d c e = c 𝒫 x d a mrCls d c 𝒫 b Fin
51 49 50 ax-mp e 𝒫 b Fin c 𝒫 x d a mrCls d c e = c 𝒫 x d a mrCls d c 𝒫 b Fin
52 51 sseq1i e 𝒫 b Fin c 𝒫 x d a mrCls d c e b c 𝒫 x d a mrCls d c 𝒫 b Fin b
53 iunss e 𝒫 b Fin c 𝒫 x d a mrCls d c e b e 𝒫 b Fin c 𝒫 x d a mrCls d c e b
54 eqid c 𝒫 x d a mrCls d c = c 𝒫 x d a mrCls d c
55 fveq2 c = e mrCls d c = mrCls d e
56 55 iuneq2d c = e d a mrCls d c = d a mrCls d e
57 inss1 𝒫 b Fin 𝒫 b
58 37 sspwd b 𝒫 x 𝒫 b 𝒫 x
59 58 adantl a ACS x b 𝒫 x 𝒫 b 𝒫 x
60 57 59 sstrid a ACS x b 𝒫 x 𝒫 b Fin 𝒫 x
61 60 sselda a ACS x b 𝒫 x e 𝒫 b Fin e 𝒫 x
62 20 21 mrcssvd a ACS x d a mrCls d e x
63 62 ralrimiva a ACS x d a mrCls d e x
64 63 ad2antrr a ACS x b 𝒫 x e 𝒫 b Fin d a mrCls d e x
65 iunss d a mrCls d e x d a mrCls d e x
66 64 65 sylibr a ACS x b 𝒫 x e 𝒫 b Fin d a mrCls d e x
67 ssexg d a mrCls d e x x V d a mrCls d e V
68 66 11 67 sylancl a ACS x b 𝒫 x e 𝒫 b Fin d a mrCls d e V
69 54 56 61 68 fvmptd3 a ACS x b 𝒫 x e 𝒫 b Fin c 𝒫 x d a mrCls d c e = d a mrCls d e
70 69 sseq1d a ACS x b 𝒫 x e 𝒫 b Fin c 𝒫 x d a mrCls d c e b d a mrCls d e b
71 70 ralbidva a ACS x b 𝒫 x e 𝒫 b Fin c 𝒫 x d a mrCls d c e b e 𝒫 b Fin d a mrCls d e b
72 53 71 syl5bb a ACS x b 𝒫 x e 𝒫 b Fin c 𝒫 x d a mrCls d c e b e 𝒫 b Fin d a mrCls d e b
73 52 72 bitr3id a ACS x b 𝒫 x c 𝒫 x d a mrCls d c 𝒫 b Fin b e 𝒫 b Fin d a mrCls d e b
74 46 48 73 3bitr4d a ACS x b 𝒫 x b 𝒫 x a c 𝒫 x d a mrCls d c 𝒫 b Fin b
75 74 ralrimiva a ACS x b 𝒫 x b 𝒫 x a c 𝒫 x d a mrCls d c 𝒫 b Fin b
76 29 75 jca a ACS x c 𝒫 x d a mrCls d c : 𝒫 x 𝒫 x b 𝒫 x b 𝒫 x a c 𝒫 x d a mrCls d c 𝒫 b Fin b
77 feq1 f = c 𝒫 x d a mrCls d c f : 𝒫 x 𝒫 x c 𝒫 x d a mrCls d c : 𝒫 x 𝒫 x
78 imaeq1 f = c 𝒫 x d a mrCls d c f 𝒫 b Fin = c 𝒫 x d a mrCls d c 𝒫 b Fin
79 78 unieqd f = c 𝒫 x d a mrCls d c f 𝒫 b Fin = c 𝒫 x d a mrCls d c 𝒫 b Fin
80 79 sseq1d f = c 𝒫 x d a mrCls d c f 𝒫 b Fin b c 𝒫 x d a mrCls d c 𝒫 b Fin b
81 80 bibi2d f = c 𝒫 x d a mrCls d c b 𝒫 x a f 𝒫 b Fin b b 𝒫 x a c 𝒫 x d a mrCls d c 𝒫 b Fin b
82 81 ralbidv f = c 𝒫 x d a mrCls d c b 𝒫 x b 𝒫 x a f 𝒫 b Fin b b 𝒫 x b 𝒫 x a c 𝒫 x d a mrCls d c 𝒫 b Fin b
83 77 82 anbi12d f = c 𝒫 x d a mrCls d c f : 𝒫 x 𝒫 x b 𝒫 x b 𝒫 x a f 𝒫 b Fin b c 𝒫 x d a mrCls d c : 𝒫 x 𝒫 x b 𝒫 x b 𝒫 x a c 𝒫 x d a mrCls d c 𝒫 b Fin b
84 35 76 83 spcedv a ACS x f f : 𝒫 x 𝒫 x b 𝒫 x b 𝒫 x a f 𝒫 b Fin b
85 isacs 𝒫 x a ACS x 𝒫 x a Moore x f f : 𝒫 x 𝒫 x b 𝒫 x b 𝒫 x a f 𝒫 b Fin b
86 18 84 85 sylanbrc a ACS x 𝒫 x a ACS x
87 86 adantl a ACS x 𝒫 x a ACS x
88 10 87 ismred2 ACS x Moore 𝒫 x
89 88 mptru ACS x Moore 𝒫 x
90 4 89 vtoclg X V ACS X Moore 𝒫 X