Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
|
pweq |
|
3 |
2
|
fveq2d |
|
4 |
1 3
|
eleq12d |
|
5 |
|
acsmre |
|
6 |
|
mresspw |
|
7 |
5 6
|
syl |
|
8 |
5 7
|
elpwd |
|
9 |
8
|
ssriv |
|
10 |
9
|
a1i |
|
11 |
|
vex |
|
12 |
|
mremre |
|
13 |
11 12
|
mp1i |
|
14 |
5
|
ssriv |
|
15 |
|
sstr |
|
16 |
14 15
|
mpan2 |
|
17 |
|
mrerintcl |
|
18 |
13 16 17
|
syl2anc |
|
19 |
|
ssel2 |
|
20 |
19
|
acsmred |
|
21 |
|
eqid |
|
22 |
20 21
|
mrcssvd |
|
23 |
22
|
ralrimiva |
|
24 |
23
|
adantr |
|
25 |
|
iunss |
|
26 |
24 25
|
sylibr |
|
27 |
11
|
elpw2 |
|
28 |
26 27
|
sylibr |
|
29 |
28
|
fmpttd |
|
30 |
|
fssxp |
|
31 |
29 30
|
syl |
|
32 |
|
vpwex |
|
33 |
32 32
|
xpex |
|
34 |
|
ssexg |
|
35 |
31 33 34
|
sylancl |
|
36 |
19
|
adantlr |
|
37 |
|
elpwi |
|
38 |
37
|
ad2antlr |
|
39 |
21
|
acsfiel2 |
|
40 |
36 38 39
|
syl2anc |
|
41 |
40
|
ralbidva |
|
42 |
|
iunss |
|
43 |
42
|
ralbii |
|
44 |
|
ralcom |
|
45 |
43 44
|
bitri |
|
46 |
41 45
|
bitr4di |
|
47 |
|
elrint2 |
|
48 |
47
|
adantl |
|
49 |
|
funmpt |
|
50 |
|
funiunfv |
|
51 |
49 50
|
ax-mp |
|
52 |
51
|
sseq1i |
|
53 |
|
iunss |
|
54 |
|
eqid |
|
55 |
|
fveq2 |
|
56 |
55
|
iuneq2d |
|
57 |
|
inss1 |
|
58 |
37
|
sspwd |
|
59 |
58
|
adantl |
|
60 |
57 59
|
sstrid |
|
61 |
60
|
sselda |
|
62 |
20 21
|
mrcssvd |
|
63 |
62
|
ralrimiva |
|
64 |
63
|
ad2antrr |
|
65 |
|
iunss |
|
66 |
64 65
|
sylibr |
|
67 |
|
ssexg |
|
68 |
66 11 67
|
sylancl |
|
69 |
54 56 61 68
|
fvmptd3 |
|
70 |
69
|
sseq1d |
|
71 |
70
|
ralbidva |
|
72 |
53 71
|
syl5bb |
|
73 |
52 72
|
bitr3id |
|
74 |
46 48 73
|
3bitr4d |
|
75 |
74
|
ralrimiva |
|
76 |
29 75
|
jca |
|
77 |
|
feq1 |
|
78 |
|
imaeq1 |
|
79 |
78
|
unieqd |
|
80 |
79
|
sseq1d |
|
81 |
80
|
bibi2d |
|
82 |
81
|
ralbidv |
|
83 |
77 82
|
anbi12d |
|
84 |
35 76 83
|
spcedv |
|
85 |
|
isacs |
|
86 |
18 84 85
|
sylanbrc |
|
87 |
86
|
adantl |
|
88 |
10 87
|
ismred2 |
|
89 |
88
|
mptru |
|
90 |
4 89
|
vtoclg |
|