Metamath Proof Explorer


Theorem mreclat

Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypothesis mreclatGOOD.i I = toInc C
Assertion mreclat C Moore X I CLat

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i I = toInc C
2 1 ipobas C Moore X C = Base I
3 eqidd C Moore X lub I = lub I
4 eqidd C Moore X glb I = glb I
5 1 ipopos I Poset
6 5 a1i C Moore X I Poset
7 mreuniss C Moore X x C x X
8 eqid mrCls C = mrCls C
9 8 mrccl C Moore X x X mrCls C x C
10 7 9 syldan C Moore X x C mrCls C x C
11 simpl C Moore X x C C Moore X
12 simpr C Moore X x C x C
13 eqidd C Moore X x C lub I = lub I
14 8 mrcval C Moore X x X mrCls C x = y C | x y
15 7 14 syldan C Moore X x C mrCls C x = y C | x y
16 1 11 12 13 15 ipolubdm C Moore X x C x dom lub I mrCls C x C
17 10 16 mpbird C Moore X x C x dom lub I
18 ssv y V
19 int0 = V
20 18 19 sseqtrri y
21 simplr C Moore X x C x = y C x =
22 21 inteqd C Moore X x C x = y C x =
23 20 22 sseqtrrid C Moore X x C x = y C y x
24 23 rabeqcda C Moore X x C x = y C | y x = C
25 24 unieqd C Moore X x C x = y C | y x = C
26 mreuni C Moore X C = X
27 mre1cl C Moore X X C
28 26 27 eqeltrd C Moore X C C
29 28 ad2antrr C Moore X x C x = C C
30 25 29 eqeltrd C Moore X x C x = y C | y x C
31 mreintcl C Moore X x C x x C
32 unimax x C y C | y x = x
33 31 32 syl C Moore X x C x y C | y x = x
34 33 31 eqeltrd C Moore X x C x y C | y x C
35 34 3expa C Moore X x C x y C | y x C
36 30 35 pm2.61dane C Moore X x C y C | y x C
37 eqidd C Moore X x C glb I = glb I
38 eqidd C Moore X x C y C | y x = y C | y x
39 1 11 12 37 38 ipoglbdm C Moore X x C x dom glb I y C | y x C
40 36 39 mpbird C Moore X x C x dom glb I
41 2 3 4 6 17 40 isclatd C Moore X I CLat