| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexd.1 |  | 
						
							| 2 |  | mreexd.2 |  | 
						
							| 3 |  | mreexd.3 |  | 
						
							| 4 |  | mreexd.4 |  | 
						
							| 5 |  | mreexd.5 |  | 
						
							| 6 |  | mreexd.6 |  | 
						
							| 7 | 1 3 | sselpwd |  | 
						
							| 8 | 4 | adantr |  | 
						
							| 9 | 5 | ad2antrr |  | 
						
							| 10 |  | simplr |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 11 | sneqd |  | 
						
							| 13 | 10 12 | uneq12d |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 | 9 14 | eleqtrrd |  | 
						
							| 16 | 6 | ad2antrr |  | 
						
							| 17 | 10 | fveq2d |  | 
						
							| 18 | 16 17 | neleqtrrd |  | 
						
							| 19 | 15 18 | eldifd |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 |  | simpllr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 | sneqd |  | 
						
							| 24 | 21 23 | uneq12d |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 | 20 25 | eleq12d |  | 
						
							| 27 | 19 26 | rspcdv |  | 
						
							| 28 | 8 27 | rspcimdv |  | 
						
							| 29 | 7 28 | rspcimdv |  | 
						
							| 30 | 2 29 | mpd |  |