Step |
Hyp |
Ref |
Expression |
1 |
|
mreexd.1 |
|
2 |
|
mreexd.2 |
|
3 |
|
mreexd.3 |
|
4 |
|
mreexd.4 |
|
5 |
|
mreexd.5 |
|
6 |
|
mreexd.6 |
|
7 |
1 3
|
sselpwd |
|
8 |
4
|
adantr |
|
9 |
5
|
ad2antrr |
|
10 |
|
simplr |
|
11 |
|
simpr |
|
12 |
11
|
sneqd |
|
13 |
10 12
|
uneq12d |
|
14 |
13
|
fveq2d |
|
15 |
9 14
|
eleqtrrd |
|
16 |
6
|
ad2antrr |
|
17 |
10
|
fveq2d |
|
18 |
16 17
|
neleqtrrd |
|
19 |
15 18
|
eldifd |
|
20 |
|
simplr |
|
21 |
|
simpllr |
|
22 |
|
simpr |
|
23 |
22
|
sneqd |
|
24 |
21 23
|
uneq12d |
|
25 |
24
|
fveq2d |
|
26 |
20 25
|
eleq12d |
|
27 |
19 26
|
rspcdv |
|
28 |
8 27
|
rspcimdv |
|
29 |
7 28
|
rspcimdv |
|
30 |
2 29
|
mpd |
|