Metamath Proof Explorer


Theorem mreexd

Description: In a Moore system, the closure operator is said to have theexchange property if, for all elements y and z of the base set and subsets S of the base set such that z is in the closure of ( S u. { y } ) but not in the closure of S , y is in the closure of ( S u. { z } ) (Definition 3.1.9 in FaureFrolicher p. 57 to 58.) This theorem allows us to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexd.1 φ X V
mreexd.2 φ s 𝒫 X y X z N s y N s y N s z
mreexd.3 φ S X
mreexd.4 φ Y X
mreexd.5 φ Z N S Y
mreexd.6 φ ¬ Z N S
Assertion mreexd φ Y N S Z

Proof

Step Hyp Ref Expression
1 mreexd.1 φ X V
2 mreexd.2 φ s 𝒫 X y X z N s y N s y N s z
3 mreexd.3 φ S X
4 mreexd.4 φ Y X
5 mreexd.5 φ Z N S Y
6 mreexd.6 φ ¬ Z N S
7 1 3 sselpwd φ S 𝒫 X
8 4 adantr φ s = S Y X
9 5 ad2antrr φ s = S y = Y Z N S Y
10 simplr φ s = S y = Y s = S
11 simpr φ s = S y = Y y = Y
12 11 sneqd φ s = S y = Y y = Y
13 10 12 uneq12d φ s = S y = Y s y = S Y
14 13 fveq2d φ s = S y = Y N s y = N S Y
15 9 14 eleqtrrd φ s = S y = Y Z N s y
16 6 ad2antrr φ s = S y = Y ¬ Z N S
17 10 fveq2d φ s = S y = Y N s = N S
18 16 17 neleqtrrd φ s = S y = Y ¬ Z N s
19 15 18 eldifd φ s = S y = Y Z N s y N s
20 simplr φ s = S y = Y z = Z y = Y
21 simpllr φ s = S y = Y z = Z s = S
22 simpr φ s = S y = Y z = Z z = Z
23 22 sneqd φ s = S y = Y z = Z z = Z
24 21 23 uneq12d φ s = S y = Y z = Z s z = S Z
25 24 fveq2d φ s = S y = Y z = Z N s z = N S Z
26 20 25 eleq12d φ s = S y = Y z = Z y N s z Y N S Z
27 19 26 rspcdv φ s = S y = Y z N s y N s y N s z Y N S Z
28 8 27 rspcimdv φ s = S y X z N s y N s y N s z Y N S Z
29 7 28 rspcimdv φ s 𝒫 X y X z N s y N s y N s z Y N S Z
30 2 29 mpd φ Y N S Z