Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
|
2 |
|
mreexexlem2d.2 |
|
3 |
|
mreexexlem2d.3 |
|
4 |
|
mreexexlem2d.4 |
|
5 |
|
mreexexlem2d.5 |
|
6 |
|
mreexexlem2d.6 |
|
7 |
|
mreexexlem2d.7 |
|
8 |
|
mreexexlem2d.8 |
|
9 |
|
mreexexd.9 |
|
10 |
1
|
elfvexd |
|
11 |
|
exmid |
|
12 |
|
ficardid |
|
13 |
12
|
ensymd |
|
14 |
|
iftrue |
|
15 |
13 14
|
breqtrrd |
|
16 |
15
|
a1i |
|
17 |
9
|
orcanai |
|
18 |
|
ficardid |
|
19 |
18
|
ensymd |
|
20 |
17 19
|
syl |
|
21 |
|
iffalse |
|
22 |
21
|
adantl |
|
23 |
20 22
|
breqtrrd |
|
24 |
23
|
ex |
|
25 |
16 24
|
orim12d |
|
26 |
11 25
|
mpi |
|
27 |
|
ficardom |
|
28 |
27
|
adantl |
|
29 |
|
ficardom |
|
30 |
17 29
|
syl |
|
31 |
28 30
|
ifclda |
|
32 |
|
breq2 |
|
33 |
|
breq2 |
|
34 |
32 33
|
orbi12d |
|
35 |
34
|
3anbi1d |
|
36 |
35
|
imbi1d |
|
37 |
36
|
2ralbidv |
|
38 |
37
|
albidv |
|
39 |
38
|
imbi2d |
|
40 |
|
breq2 |
|
41 |
|
breq2 |
|
42 |
40 41
|
orbi12d |
|
43 |
42
|
3anbi1d |
|
44 |
43
|
imbi1d |
|
45 |
44
|
2ralbidv |
|
46 |
45
|
albidv |
|
47 |
46
|
imbi2d |
|
48 |
|
breq2 |
|
49 |
|
breq2 |
|
50 |
48 49
|
orbi12d |
|
51 |
50
|
3anbi1d |
|
52 |
51
|
imbi1d |
|
53 |
52
|
2ralbidv |
|
54 |
53
|
albidv |
|
55 |
54
|
imbi2d |
|
56 |
|
breq2 |
|
57 |
|
breq2 |
|
58 |
56 57
|
orbi12d |
|
59 |
58
|
3anbi1d |
|
60 |
59
|
imbi1d |
|
61 |
60
|
2ralbidv |
|
62 |
61
|
albidv |
|
63 |
62
|
imbi2d |
|
64 |
1
|
ad2antrr |
|
65 |
4
|
ad2antrr |
|
66 |
|
simplrl |
|
67 |
66
|
elpwid |
|
68 |
|
simplrr |
|
69 |
68
|
elpwid |
|
70 |
|
simpr2 |
|
71 |
|
simpr3 |
|
72 |
|
simpr1 |
|
73 |
|
en0 |
|
74 |
|
en0 |
|
75 |
73 74
|
orbi12i |
|
76 |
72 75
|
sylib |
|
77 |
64 2 3 65 67 69 70 71 76
|
mreexexlem3d |
|
78 |
77
|
ex |
|
79 |
78
|
ralrimivva |
|
80 |
79
|
alrimiv |
|
81 |
|
nfv |
|
82 |
|
nfv |
|
83 |
|
nfa1 |
|
84 |
81 82 83
|
nf3an |
|
85 |
|
nfv |
|
86 |
|
nfv |
|
87 |
|
nfra1 |
|
88 |
87
|
nfal |
|
89 |
85 86 88
|
nf3an |
|
90 |
|
nfv |
|
91 |
|
nfv |
|
92 |
|
nfra2w |
|
93 |
92
|
nfal |
|
94 |
90 91 93
|
nf3an |
|
95 |
|
nfv |
|
96 |
94 95
|
nfan |
|
97 |
1
|
3ad2ant1 |
|
98 |
97
|
ad2antrr |
|
99 |
4
|
3ad2ant1 |
|
100 |
99
|
ad2antrr |
|
101 |
|
simplrl |
|
102 |
101
|
elpwid |
|
103 |
|
simplrr |
|
104 |
103
|
elpwid |
|
105 |
|
simpr2 |
|
106 |
|
simpr3 |
|
107 |
|
simpll2 |
|
108 |
|
simpll3 |
|
109 |
|
simpr1 |
|
110 |
98 2 3 100 102 104 105 106 107 108 109
|
mreexexlem4d |
|
111 |
110
|
ex |
|
112 |
111
|
expr |
|
113 |
96 112
|
ralrimi |
|
114 |
113
|
ex |
|
115 |
89 114
|
ralrimi |
|
116 |
84 115
|
alrimi |
|
117 |
116
|
3exp |
|
118 |
117
|
com12 |
|
119 |
118
|
a2d |
|
120 |
39 47 55 63 80 119
|
finds |
|
121 |
31 120
|
mpcom |
|
122 |
10 5 6 7 8 26 121
|
mreexexlemd |
|