Metamath Proof Explorer


Theorem mreexexd

Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if F and G are disjoint from H , ( F u. H ) is independent, F is contained in the closure of ( G u. H ) , and either F or G is finite, then there is a subset q of G equinumerous to F such that ( q u. H ) is independent. This implies the case of Proposition 4.2.1 in FaureFrolicher p. 86 where either ( A \ B ) or ( B \ A ) is finite. The theorem is proven by induction using mreexexlem3d for the base case and mreexexlem4d for the induction step. (Contributed by David Moews, 1-May-2017) Remove dependencies on ax-rep and ax-ac2 . (Revised by Brendan Leahy, 2-Jun-2021)

Ref Expression
Hypotheses mreexexlem2d.1 φ A Moore X
mreexexlem2d.2 N = mrCls A
mreexexlem2d.3 I = mrInd A
mreexexlem2d.4 φ s 𝒫 X y X z N s y N s y N s z
mreexexlem2d.5 φ F X H
mreexexlem2d.6 φ G X H
mreexexlem2d.7 φ F N G H
mreexexlem2d.8 φ F H I
mreexexd.9 φ F Fin G Fin
Assertion mreexexd φ q 𝒫 G F q q H I

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 φ A Moore X
2 mreexexlem2d.2 N = mrCls A
3 mreexexlem2d.3 I = mrInd A
4 mreexexlem2d.4 φ s 𝒫 X y X z N s y N s y N s z
5 mreexexlem2d.5 φ F X H
6 mreexexlem2d.6 φ G X H
7 mreexexlem2d.7 φ F N G H
8 mreexexlem2d.8 φ F H I
9 mreexexd.9 φ F Fin G Fin
10 1 elfvexd φ X V
11 exmid F Fin ¬ F Fin
12 ficardid F Fin card F F
13 12 ensymd F Fin F card F
14 iftrue F Fin if F Fin card F card G = card F
15 13 14 breqtrrd F Fin F if F Fin card F card G
16 15 a1i φ F Fin F if F Fin card F card G
17 9 orcanai φ ¬ F Fin G Fin
18 ficardid G Fin card G G
19 18 ensymd G Fin G card G
20 17 19 syl φ ¬ F Fin G card G
21 iffalse ¬ F Fin if F Fin card F card G = card G
22 21 adantl φ ¬ F Fin if F Fin card F card G = card G
23 20 22 breqtrrd φ ¬ F Fin G if F Fin card F card G
24 23 ex φ ¬ F Fin G if F Fin card F card G
25 16 24 orim12d φ F Fin ¬ F Fin F if F Fin card F card G G if F Fin card F card G
26 11 25 mpi φ F if F Fin card F card G G if F Fin card F card G
27 ficardom F Fin card F ω
28 27 adantl φ F Fin card F ω
29 ficardom G Fin card G ω
30 17 29 syl φ ¬ F Fin card G ω
31 28 30 ifclda φ if F Fin card F card G ω
32 breq2 l = f l f
33 breq2 l = g l g
34 32 33 orbi12d l = f l g l f g
35 34 3anbi1d l = f l g l f N g h f h I f g f N g h f h I
36 35 imbi1d l = f l g l f N g h f h I i 𝒫 g f i i h I f g f N g h f h I i 𝒫 g f i i h I
37 36 2ralbidv l = f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
38 37 albidv l = h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
39 38 imbi2d l = φ h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I φ h f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
40 breq2 l = k f l f k
41 breq2 l = k g l g k
42 40 41 orbi12d l = k f l g l f k g k
43 42 3anbi1d l = k f l g l f N g h f h I f k g k f N g h f h I
44 43 imbi1d l = k f l g l f N g h f h I i 𝒫 g f i i h I f k g k f N g h f h I i 𝒫 g f i i h I
45 44 2ralbidv l = k f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
46 45 albidv l = k h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
47 46 imbi2d l = k φ h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I φ h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
48 breq2 l = suc k f l f suc k
49 breq2 l = suc k g l g suc k
50 48 49 orbi12d l = suc k f l g l f suc k g suc k
51 50 3anbi1d l = suc k f l g l f N g h f h I f suc k g suc k f N g h f h I
52 51 imbi1d l = suc k f l g l f N g h f h I i 𝒫 g f i i h I f suc k g suc k f N g h f h I i 𝒫 g f i i h I
53 52 2ralbidv l = suc k f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
54 53 albidv l = suc k h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
55 54 imbi2d l = suc k φ h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I φ h f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
56 breq2 l = if F Fin card F card G f l f if F Fin card F card G
57 breq2 l = if F Fin card F card G g l g if F Fin card F card G
58 56 57 orbi12d l = if F Fin card F card G f l g l f if F Fin card F card G g if F Fin card F card G
59 58 3anbi1d l = if F Fin card F card G f l g l f N g h f h I f if F Fin card F card G g if F Fin card F card G f N g h f h I
60 59 imbi1d l = if F Fin card F card G f l g l f N g h f h I i 𝒫 g f i i h I f if F Fin card F card G g if F Fin card F card G f N g h f h I i 𝒫 g f i i h I
61 60 2ralbidv l = if F Fin card F card G f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f if F Fin card F card G g if F Fin card F card G f N g h f h I i 𝒫 g f i i h I
62 61 albidv l = if F Fin card F card G h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f if F Fin card F card G g if F Fin card F card G f N g h f h I i 𝒫 g f i i h I
63 62 imbi2d l = if F Fin card F card G φ h f 𝒫 X h g 𝒫 X h f l g l f N g h f h I i 𝒫 g f i i h I φ h f 𝒫 X h g 𝒫 X h f if F Fin card F card G g if F Fin card F card G f N g h f h I i 𝒫 g f i i h I
64 1 ad2antrr φ f 𝒫 X h g 𝒫 X h f g f N g h f h I A Moore X
65 4 ad2antrr φ f 𝒫 X h g 𝒫 X h f g f N g h f h I s 𝒫 X y X z N s y N s y N s z
66 simplrl φ f 𝒫 X h g 𝒫 X h f g f N g h f h I f 𝒫 X h
67 66 elpwid φ f 𝒫 X h g 𝒫 X h f g f N g h f h I f X h
68 simplrr φ f 𝒫 X h g 𝒫 X h f g f N g h f h I g 𝒫 X h
69 68 elpwid φ f 𝒫 X h g 𝒫 X h f g f N g h f h I g X h
70 simpr2 φ f 𝒫 X h g 𝒫 X h f g f N g h f h I f N g h
71 simpr3 φ f 𝒫 X h g 𝒫 X h f g f N g h f h I f h I
72 simpr1 φ f 𝒫 X h g 𝒫 X h f g f N g h f h I f g
73 en0 f f =
74 en0 g g =
75 73 74 orbi12i f g f = g =
76 72 75 sylib φ f 𝒫 X h g 𝒫 X h f g f N g h f h I f = g =
77 64 2 3 65 67 69 70 71 76 mreexexlem3d φ f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
78 77 ex φ f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
79 78 ralrimivva φ f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
80 79 alrimiv φ h f 𝒫 X h g 𝒫 X h f g f N g h f h I i 𝒫 g f i i h I
81 nfv h φ
82 nfv h k ω
83 nfa1 h h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
84 81 82 83 nf3an h φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
85 nfv f φ
86 nfv f k ω
87 nfra1 f f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
88 87 nfal f h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
89 85 86 88 nf3an f φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
90 nfv g φ
91 nfv g k ω
92 nfra2w g f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
93 92 nfal g h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
94 90 91 93 nf3an g φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
95 nfv g f 𝒫 X h
96 94 95 nfan g φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h
97 1 3ad2ant1 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I A Moore X
98 97 ad2antrr φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I A Moore X
99 4 3ad2ant1 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I s 𝒫 X y X z N s y N s y N s z
100 99 ad2antrr φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I s 𝒫 X y X z N s y N s y N s z
101 simplrl φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I f 𝒫 X h
102 101 elpwid φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I f X h
103 simplrr φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I g 𝒫 X h
104 103 elpwid φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I g X h
105 simpr2 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I f N g h
106 simpr3 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I f h I
107 simpll2 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I k ω
108 simpll3 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I
109 simpr1 φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I f suc k g suc k
110 98 2 3 100 102 104 105 106 107 108 109 mreexexlem4d φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
111 110 ex φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
112 111 expr φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
113 96 112 ralrimi φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
114 113 ex φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
115 89 114 ralrimi φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
116 84 115 alrimi φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
117 116 3exp φ k ω h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
118 117 com12 k ω φ h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I h f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
119 118 a2d k ω φ h f 𝒫 X h g 𝒫 X h f k g k f N g h f h I i 𝒫 g f i i h I φ h f 𝒫 X h g 𝒫 X h f suc k g suc k f N g h f h I i 𝒫 g f i i h I
120 39 47 55 63 80 119 finds if F Fin card F card G ω φ h f 𝒫 X h g 𝒫 X h f if F Fin card F card G g if F Fin card F card G f N g h f h I i 𝒫 g f i i h I
121 31 120 mpcom φ h f 𝒫 X h g 𝒫 X h f if F Fin card F card G g if F Fin card F card G f N g h f h I i 𝒫 g f i i h I
122 10 5 6 7 8 26 121 mreexexlemd φ q 𝒫 G F q q H I