Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
|
2 |
|
mreexexlem2d.2 |
|
3 |
|
mreexexlem2d.3 |
|
4 |
|
mreexexlem2d.4 |
|
5 |
|
mreexexlem2d.5 |
|
6 |
|
mreexexlem2d.6 |
|
7 |
|
mreexexlem2d.7 |
|
8 |
|
mreexexlem2d.8 |
|
9 |
|
mreexexlem2d.9 |
|
10 |
7
|
adantr |
|
11 |
1
|
adantr |
|
12 |
|
simpr |
|
13 |
|
ssun2 |
|
14 |
|
difundir |
|
15 |
|
incom |
|
16 |
|
ssdifin0 |
|
17 |
5 16
|
syl |
|
18 |
15 17
|
eqtr3id |
|
19 |
|
minel |
|
20 |
9 18 19
|
syl2anc |
|
21 |
|
difsnb |
|
22 |
20 21
|
sylib |
|
23 |
22
|
uneq2d |
|
24 |
14 23
|
eqtrid |
|
25 |
13 24
|
sseqtrrid |
|
26 |
3 1 8
|
mrissd |
|
27 |
26
|
ssdifssd |
|
28 |
1 2 27
|
mrcssidd |
|
29 |
25 28
|
sstrd |
|
30 |
29
|
adantr |
|
31 |
12 30
|
unssd |
|
32 |
11 2
|
mrcssvd |
|
33 |
11 2 31 32
|
mrcssd |
|
34 |
27
|
adantr |
|
35 |
11 2 34
|
mrcidmd |
|
36 |
33 35
|
sseqtrd |
|
37 |
10 36
|
sstrd |
|
38 |
9
|
adantr |
|
39 |
37 38
|
sseldd |
|
40 |
8
|
adantr |
|
41 |
|
ssun1 |
|
42 |
41 38
|
sselid |
|
43 |
2 3 11 40 42
|
ismri2dad |
|
44 |
39 43
|
pm2.65da |
|
45 |
|
nss |
|
46 |
44 45
|
sylib |
|
47 |
|
simprl |
|
48 |
|
ssun1 |
|
49 |
48 24
|
sseqtrrid |
|
50 |
49 28
|
sstrd |
|
51 |
50
|
adantr |
|
52 |
|
simprr |
|
53 |
51 52
|
ssneldd |
|
54 |
|
unass |
|
55 |
1
|
adantr |
|
56 |
4
|
adantr |
|
57 |
8
|
adantr |
|
58 |
|
difss |
|
59 |
|
unss1 |
|
60 |
58 59
|
mp1i |
|
61 |
55 2 3 57 60
|
mrissmrid |
|
62 |
6
|
adantr |
|
63 |
62
|
difss2d |
|
64 |
63 47
|
sseldd |
|
65 |
24
|
adantr |
|
66 |
65
|
fveq2d |
|
67 |
52 66
|
neleqtrd |
|
68 |
55 2 3 56 61 64 67
|
mreexmrid |
|
69 |
54 68
|
eqeltrrid |
|
70 |
47 53 69
|
jca32 |
|
71 |
70
|
ex |
|
72 |
71
|
eximdv |
|
73 |
46 72
|
mpd |
|
74 |
|
df-rex |
|
75 |
73 74
|
sylibr |
|