Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
|
2 |
|
mreexexlem2d.2 |
|
3 |
|
mreexexlem2d.3 |
|
4 |
|
mreexexlem2d.4 |
|
5 |
|
mreexexlem2d.5 |
|
6 |
|
mreexexlem2d.6 |
|
7 |
|
mreexexlem2d.7 |
|
8 |
|
mreexexlem2d.8 |
|
9 |
|
mreexexlem3d.9 |
|
10 |
|
simpr |
|
11 |
1
|
adantr |
|
12 |
7
|
adantr |
|
13 |
|
simpr |
|
14 |
13
|
uneq1d |
|
15 |
|
uncom |
|
16 |
|
un0 |
|
17 |
15 16
|
eqtr3i |
|
18 |
14 17
|
eqtrdi |
|
19 |
18
|
fveq2d |
|
20 |
12 19
|
sseqtrd |
|
21 |
8
|
adantr |
|
22 |
3 11 21
|
mrissd |
|
23 |
22
|
unssbd |
|
24 |
11 2 23
|
mrcssidd |
|
25 |
20 24
|
unssd |
|
26 |
|
ssun2 |
|
27 |
26
|
a1i |
|
28 |
11 2 3 25 27 21
|
mrissmrcd |
|
29 |
|
ssequn1 |
|
30 |
28 29
|
sylibr |
|
31 |
5
|
adantr |
|
32 |
30 31
|
ssind |
|
33 |
|
disjdif |
|
34 |
32 33
|
sseqtrdi |
|
35 |
|
ss0b |
|
36 |
34 35
|
sylib |
|
37 |
10 36 9
|
mpjaodan |
|
38 |
|
0elpw |
|
39 |
37 38
|
eqeltrdi |
|
40 |
1
|
elfvexd |
|
41 |
5
|
difss2d |
|
42 |
40 41
|
ssexd |
|
43 |
|
enrefg |
|
44 |
42 43
|
syl |
|
45 |
|
breq2 |
|
46 |
|
uneq1 |
|
47 |
46
|
eleq1d |
|
48 |
45 47
|
anbi12d |
|
49 |
48
|
rspcev |
|
50 |
39 44 8 49
|
syl12anc |
|