Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
|
2 |
|
mreexexlem2d.2 |
|
3 |
|
mreexexlem2d.3 |
|
4 |
|
mreexexlem2d.4 |
|
5 |
|
mreexexlem2d.5 |
|
6 |
|
mreexexlem2d.6 |
|
7 |
|
mreexexlem2d.7 |
|
8 |
|
mreexexlem2d.8 |
|
9 |
|
mreexexlem4d.9 |
|
10 |
|
mreexexlem4d.A |
|
11 |
|
mreexexlem4d.B |
|
12 |
1
|
adantr |
|
13 |
4
|
adantr |
|
14 |
5
|
adantr |
|
15 |
6
|
adantr |
|
16 |
7
|
adantr |
|
17 |
8
|
adantr |
|
18 |
|
animorrl |
|
19 |
12 2 3 13 14 15 16 17 18
|
mreexexlem3d |
|
20 |
|
n0 |
|
21 |
20
|
biimpi |
|
22 |
21
|
adantl |
|
23 |
1
|
adantr |
|
24 |
4
|
adantr |
|
25 |
5
|
adantr |
|
26 |
6
|
adantr |
|
27 |
7
|
adantr |
|
28 |
8
|
adantr |
|
29 |
|
simpr |
|
30 |
23 2 3 24 25 26 27 28 29
|
mreexexlem2d |
|
31 |
|
3anass |
|
32 |
1
|
ad2antrr |
|
33 |
32
|
elfvexd |
|
34 |
|
simpr2 |
|
35 |
|
difsnb |
|
36 |
34 35
|
sylib |
|
37 |
5
|
ad2antrr |
|
38 |
37
|
ssdifssd |
|
39 |
38
|
ssdifd |
|
40 |
36 39
|
eqsstrrd |
|
41 |
|
difun1 |
|
42 |
40 41
|
sseqtrrdi |
|
43 |
6
|
ad2antrr |
|
44 |
43
|
ssdifd |
|
45 |
44 41
|
sseqtrrdi |
|
46 |
7
|
ad2antrr |
|
47 |
|
simpr1 |
|
48 |
|
uncom |
|
49 |
48
|
uneq2i |
|
50 |
|
unass |
|
51 |
|
difsnid |
|
52 |
51
|
uneq1d |
|
53 |
50 52
|
eqtr3id |
|
54 |
49 53
|
eqtrid |
|
55 |
47 54
|
syl |
|
56 |
55
|
fveq2d |
|
57 |
46 56
|
sseqtrrd |
|
58 |
57
|
ssdifssd |
|
59 |
|
simpr3 |
|
60 |
11
|
ad2antrr |
|
61 |
9
|
ad2antrr |
|
62 |
|
simplr |
|
63 |
|
3anan12 |
|
64 |
|
dif1en |
|
65 |
63 64
|
sylbir |
|
66 |
65
|
expcom |
|
67 |
61 62 66
|
syl2anc |
|
68 |
|
3anan12 |
|
69 |
|
dif1en |
|
70 |
68 69
|
sylbir |
|
71 |
70
|
expcom |
|
72 |
61 47 71
|
syl2anc |
|
73 |
67 72
|
orim12d |
|
74 |
60 73
|
mpd |
|
75 |
10
|
ad2antrr |
|
76 |
33 42 45 58 59 74 75
|
mreexexlemd |
|
77 |
33
|
adantr |
|
78 |
6
|
ad3antrrr |
|
79 |
78
|
difss2d |
|
80 |
77 79
|
ssexd |
|
81 |
|
simprl |
|
82 |
81
|
elpwid |
|
83 |
82
|
difss2d |
|
84 |
|
simplr1 |
|
85 |
84
|
snssd |
|
86 |
83 85
|
unssd |
|
87 |
80 86
|
sselpwd |
|
88 |
|
difsnid |
|
89 |
88
|
ad3antlr |
|
90 |
|
simprrl |
|
91 |
|
en2sn |
|
92 |
91
|
el2v |
|
93 |
92
|
a1i |
|
94 |
|
disjdifr |
|
95 |
94
|
a1i |
|
96 |
|
ssdifin0 |
|
97 |
82 96
|
syl |
|
98 |
|
unen |
|
99 |
90 93 95 97 98
|
syl22anc |
|
100 |
89 99
|
eqbrtrrd |
|
101 |
|
unass |
|
102 |
|
uncom |
|
103 |
102
|
uneq2i |
|
104 |
101 103
|
eqtr2i |
|
105 |
|
simprrr |
|
106 |
104 105
|
eqeltrrid |
|
107 |
|
breq2 |
|
108 |
|
uneq1 |
|
109 |
108
|
eleq1d |
|
110 |
107 109
|
anbi12d |
|
111 |
110
|
rspcev |
|
112 |
87 100 106 111
|
syl12anc |
|
113 |
76 112
|
rexlimddv |
|
114 |
31 113
|
sylan2br |
|
115 |
30 114
|
rexlimddv |
|
116 |
115
|
adantlr |
|
117 |
22 116
|
exlimddv |
|
118 |
19 117
|
pm2.61dane |
|