Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlemd.1 |
|
2 |
|
mreexexlemd.2 |
|
3 |
|
mreexexlemd.3 |
|
4 |
|
mreexexlemd.4 |
|
5 |
|
mreexexlemd.5 |
|
6 |
|
mreexexlemd.6 |
|
7 |
|
mreexexlemd.7 |
|
8 |
|
simplr |
|
9 |
8
|
breq1d |
|
10 |
|
simpr |
|
11 |
10
|
breq1d |
|
12 |
9 11
|
orbi12d |
|
13 |
|
simpll |
|
14 |
10 13
|
uneq12d |
|
15 |
14
|
fveq2d |
|
16 |
8 15
|
sseq12d |
|
17 |
8 13
|
uneq12d |
|
18 |
17
|
eleq1d |
|
19 |
12 16 18
|
3anbi123d |
|
20 |
|
simpllr |
|
21 |
|
simpr |
|
22 |
20 21
|
breq12d |
|
23 |
|
simplll |
|
24 |
21 23
|
uneq12d |
|
25 |
24
|
eleq1d |
|
26 |
22 25
|
anbi12d |
|
27 |
|
simplr |
|
28 |
27
|
pweqd |
|
29 |
26 28
|
cbvrexdva2 |
|
30 |
19 29
|
imbi12d |
|
31 |
|
simpl |
|
32 |
31
|
difeq2d |
|
33 |
32
|
pweqd |
|
34 |
33
|
adantr |
|
35 |
30 34
|
cbvraldva2 |
|
36 |
35 33
|
cbvraldva2 |
|
37 |
36
|
cbvalvw |
|
38 |
7 37
|
sylib |
|
39 |
|
ssun2 |
|
40 |
39
|
a1i |
|
41 |
5 40
|
ssexd |
|
42 |
1
|
difexd |
|
43 |
42 2
|
sselpwd |
|
44 |
43
|
adantr |
|
45 |
|
simpr |
|
46 |
45
|
difeq2d |
|
47 |
46
|
pweqd |
|
48 |
44 47
|
eleqtrrd |
|
49 |
42 3
|
sselpwd |
|
50 |
49
|
ad2antrr |
|
51 |
47
|
adantr |
|
52 |
50 51
|
eleqtrrd |
|
53 |
|
simplr |
|
54 |
53
|
breq1d |
|
55 |
|
simpr |
|
56 |
55
|
breq1d |
|
57 |
54 56
|
orbi12d |
|
58 |
|
simpllr |
|
59 |
55 58
|
uneq12d |
|
60 |
59
|
fveq2d |
|
61 |
53 60
|
sseq12d |
|
62 |
53 58
|
uneq12d |
|
63 |
62
|
eleq1d |
|
64 |
57 61 63
|
3anbi123d |
|
65 |
55
|
pweqd |
|
66 |
53
|
breq1d |
|
67 |
58
|
uneq2d |
|
68 |
67
|
eleq1d |
|
69 |
66 68
|
anbi12d |
|
70 |
65 69
|
rexeqbidv |
|
71 |
64 70
|
imbi12d |
|
72 |
52 71
|
rspcdv |
|
73 |
48 72
|
rspcimdv |
|
74 |
41 73
|
spcimdv |
|
75 |
38 74
|
mpd |
|
76 |
6 4 5 75
|
mp3and |
|