| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexexlemd.1 |  | 
						
							| 2 |  | mreexexlemd.2 |  | 
						
							| 3 |  | mreexexlemd.3 |  | 
						
							| 4 |  | mreexexlemd.4 |  | 
						
							| 5 |  | mreexexlemd.5 |  | 
						
							| 6 |  | mreexexlemd.6 |  | 
						
							| 7 |  | mreexexlemd.7 |  | 
						
							| 8 |  | simplr |  | 
						
							| 9 | 8 | breq1d |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 10 | breq1d |  | 
						
							| 12 | 9 11 | orbi12d |  | 
						
							| 13 |  | simpll |  | 
						
							| 14 | 10 13 | uneq12d |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 8 15 | sseq12d |  | 
						
							| 17 | 8 13 | uneq12d |  | 
						
							| 18 | 17 | eleq1d |  | 
						
							| 19 | 12 16 18 | 3anbi123d |  | 
						
							| 20 |  | simpllr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 20 21 | breq12d |  | 
						
							| 23 |  | simplll |  | 
						
							| 24 | 21 23 | uneq12d |  | 
						
							| 25 | 24 | eleq1d |  | 
						
							| 26 | 22 25 | anbi12d |  | 
						
							| 27 |  | simplr |  | 
						
							| 28 | 27 | pweqd |  | 
						
							| 29 | 26 28 | cbvrexdva2 |  | 
						
							| 30 | 19 29 | imbi12d |  | 
						
							| 31 |  | simpl |  | 
						
							| 32 | 31 | difeq2d |  | 
						
							| 33 | 32 | pweqd |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 30 34 | cbvraldva2 |  | 
						
							| 36 | 35 33 | cbvraldva2 |  | 
						
							| 37 | 36 | cbvalvw |  | 
						
							| 38 | 7 37 | sylib |  | 
						
							| 39 |  | ssun2 |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 | 5 40 | ssexd |  | 
						
							| 42 | 1 | difexd |  | 
						
							| 43 | 42 2 | sselpwd |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 | 45 | difeq2d |  | 
						
							| 47 | 46 | pweqd |  | 
						
							| 48 | 44 47 | eleqtrrd |  | 
						
							| 49 | 42 3 | sselpwd |  | 
						
							| 50 | 49 | ad2antrr |  | 
						
							| 51 | 47 | adantr |  | 
						
							| 52 | 50 51 | eleqtrrd |  | 
						
							| 53 |  | simplr |  | 
						
							| 54 | 53 | breq1d |  | 
						
							| 55 |  | simpr |  | 
						
							| 56 | 55 | breq1d |  | 
						
							| 57 | 54 56 | orbi12d |  | 
						
							| 58 |  | simpllr |  | 
						
							| 59 | 55 58 | uneq12d |  | 
						
							| 60 | 59 | fveq2d |  | 
						
							| 61 | 53 60 | sseq12d |  | 
						
							| 62 | 53 58 | uneq12d |  | 
						
							| 63 | 62 | eleq1d |  | 
						
							| 64 | 57 61 63 | 3anbi123d |  | 
						
							| 65 | 55 | pweqd |  | 
						
							| 66 | 53 | breq1d |  | 
						
							| 67 | 58 | uneq2d |  | 
						
							| 68 | 67 | eleq1d |  | 
						
							| 69 | 66 68 | anbi12d |  | 
						
							| 70 | 65 69 | rexeqbidv |  | 
						
							| 71 | 64 70 | imbi12d |  | 
						
							| 72 | 52 71 | rspcdv |  | 
						
							| 73 | 48 72 | rspcimdv |  | 
						
							| 74 | 41 73 | spcimdv |  | 
						
							| 75 | 38 74 | mpd |  | 
						
							| 76 | 6 4 5 75 | mp3and |  |