| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexmrid.1 |  | 
						
							| 2 |  | mreexmrid.2 |  | 
						
							| 3 |  | mreexmrid.3 |  | 
						
							| 4 |  | mreexmrid.4 |  | 
						
							| 5 |  | mreexmrid.5 |  | 
						
							| 6 |  | mreexmrid.6 |  | 
						
							| 7 |  | mreexmrid.7 |  | 
						
							| 8 | 3 1 5 | mrissd |  | 
						
							| 9 | 6 | snssd |  | 
						
							| 10 | 8 9 | unssd |  | 
						
							| 11 | 1 | 3ad2ant1 |  | 
						
							| 12 | 11 | elfvexd |  | 
						
							| 13 | 4 | 3ad2ant1 |  | 
						
							| 14 | 5 | 3ad2ant1 |  | 
						
							| 15 | 3 11 14 | mrissd |  | 
						
							| 16 | 15 | ssdifssd |  | 
						
							| 17 | 6 | 3ad2ant1 |  | 
						
							| 18 |  | simp3 |  | 
						
							| 19 |  | difundir |  | 
						
							| 20 |  | simp2 |  | 
						
							| 21 | 1 2 8 | mrcssidd |  | 
						
							| 22 | 21 7 | ssneldd |  | 
						
							| 23 | 22 | 3ad2ant1 |  | 
						
							| 24 |  | nelneq |  | 
						
							| 25 | 20 23 24 | syl2anc |  | 
						
							| 26 |  | elsni |  | 
						
							| 27 | 25 26 | nsyl |  | 
						
							| 28 |  | difsnb |  | 
						
							| 29 | 27 28 | sylib |  | 
						
							| 30 | 29 | uneq2d |  | 
						
							| 31 | 19 30 | eqtrid |  | 
						
							| 32 | 31 | fveq2d |  | 
						
							| 33 | 18 32 | eleqtrd |  | 
						
							| 34 | 2 3 11 14 20 | ismri2dad |  | 
						
							| 35 | 12 13 16 17 33 34 | mreexd |  | 
						
							| 36 | 7 | 3ad2ant1 |  | 
						
							| 37 |  | undif1 |  | 
						
							| 38 | 20 | snssd |  | 
						
							| 39 |  | ssequn2 |  | 
						
							| 40 | 38 39 | sylib |  | 
						
							| 41 | 37 40 | eqtrid |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 36 42 | neleqtrrd |  | 
						
							| 44 | 35 43 | pm2.65i |  | 
						
							| 45 |  | df-3an |  | 
						
							| 46 | 44 45 | mtbi |  | 
						
							| 47 | 46 | imnani |  | 
						
							| 48 | 47 | adantlr |  | 
						
							| 49 | 26 | adantl |  | 
						
							| 50 | 7 | ad2antrr |  | 
						
							| 51 | 49 50 | eqneltrd |  | 
						
							| 52 | 49 | sneqd |  | 
						
							| 53 | 52 | difeq2d |  | 
						
							| 54 |  | difun2 |  | 
						
							| 55 | 53 54 | eqtrdi |  | 
						
							| 56 |  | difsnb |  | 
						
							| 57 | 22 56 | sylib |  | 
						
							| 58 | 57 | ad2antrr |  | 
						
							| 59 | 55 58 | eqtrd |  | 
						
							| 60 | 59 | fveq2d |  | 
						
							| 61 | 51 60 | neleqtrrd |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 |  | elun |  | 
						
							| 64 | 62 63 | sylib |  | 
						
							| 65 | 48 61 64 | mpjaodan |  | 
						
							| 66 | 65 | ralrimiva |  | 
						
							| 67 | 2 3 1 10 66 | ismri2dd |  |