Metamath Proof Explorer


Theorem mrefg2

Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F = mrCls C
Assertion mrefg2 C Moore X g 𝒫 X Fin S = F g g 𝒫 S Fin S = F g

Proof

Step Hyp Ref Expression
1 isnacs.f F = mrCls C
2 1 mrcssid C Moore X g X g F g
3 simpr C Moore X g F g g F g
4 1 mrcssv C Moore X F g X
5 4 adantr C Moore X g F g F g X
6 3 5 sstrd C Moore X g F g g X
7 2 6 impbida C Moore X g X g F g
8 vex g V
9 8 elpw g 𝒫 X g X
10 8 elpw g 𝒫 F g g F g
11 7 9 10 3bitr4g C Moore X g 𝒫 X g 𝒫 F g
12 11 anbi1d C Moore X g 𝒫 X g Fin g 𝒫 F g g Fin
13 elin g 𝒫 X Fin g 𝒫 X g Fin
14 elin g 𝒫 F g Fin g 𝒫 F g g Fin
15 12 13 14 3bitr4g C Moore X g 𝒫 X Fin g 𝒫 F g Fin
16 pweq S = F g 𝒫 S = 𝒫 F g
17 16 ineq1d S = F g 𝒫 S Fin = 𝒫 F g Fin
18 17 eleq2d S = F g g 𝒫 S Fin g 𝒫 F g Fin
19 18 bibi2d S = F g g 𝒫 X Fin g 𝒫 S Fin g 𝒫 X Fin g 𝒫 F g Fin
20 15 19 syl5ibrcom C Moore X S = F g g 𝒫 X Fin g 𝒫 S Fin
21 20 pm5.32rd C Moore X g 𝒫 X Fin S = F g g 𝒫 S Fin S = F g
22 21 rexbidv2 C Moore X g 𝒫 X Fin S = F g g 𝒫 S Fin S = F g